

Lehrplan
Certified Tester

Automotive Software Tester (CT-AuT)

V2.1 DE

International Software Testing Qualifications Board

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 2 von 73 23.11.2025
© International Software Testing Qualifications Board

Urheberschutzvermerk
Dieser ISTQB®-Lehrplan Certified Tester – Automotive Software Tester, deutschsprachige
Ausgabe, ist urheberrechtlich geschützt.

ISTQB® ist eine eingetragene Marke des International Software Testing Qualifications Board.

Urheberrecht © 2025 an der Übersetzung der vorliegenden Version V2.1 in die deutsche Sprache
haben folgende Autoren: Ralf Bongard (Leitung), Klaudia Dussa-Zieger, Matthias Friedrich,
Thorsten Geiselhart, Michael Humm, Horst Pohlmann (Product Owner), Ralf Reißing.

Urheberrecht © 2024 an der vorliegenden Version V2.1 in englischer Sprache haben die Autoren
der englischen Originalausgabe: Ralf Bongard (Leitung), Klaudia Dussa-Zieger, Matthias Friedrich,
Thorsten Geiselhart, Horst Pohlmann (Product Owner), Ralf Reißing, Alexander Schulz.

Urheberrecht © 2018 an der Version V2.0 dieses Lehrplans haben die Autoren der englischen
Originalausgabe: Graham Bath, André Baumann, Arne Becher, Ralf Bongard (Projektleiter), Kai
Borgeest, Tim Burdach, Mirko Conrad, Klaudia Dussa-Zieger, Matthias Friedrich, Dirk Gebrath,
Thorsten Geiselhart, Matthias Hamburg, Uwe Hehn, Olaf Janßen, Jacques Kamga, Horst
Pohlmann (Leiter), Ralf Reißing, Karsten Richter, Ina Schieferdecker, Alexander Schulz, Stefan
Stefan, Stephanie Ulrich, Jork Warnecke und Stephan Weißleder.

Urheberrecht © 2011 an der Version V1.0 dieses Lehrplans hat der Autor der deutschsprachigen
Originalausgabe: Hendrik Dettmering im Auftrag von GASQ – Global Association for Software
Quality AISBL.

Unser herzlicher Dank geht an Ursula Zimpfer für ihre wertvolle Unterstützung bei der Bearbeitung
der deutschsprachigen Fassung des vorliegenden Lehrplans.

Inhaber der ausschließlichen Nutzungsrechte an dem Werk ist das German Testing Board e. V.
(GTB).

Die Nutzung des Werks ist – soweit sie nicht nach den nachfolgenden Bestimmungen und dem
Gesetz über Urheberrechte und verwandte Schutzrechte vom 9. September 1965 (UrhG) erlaubt
ist – nur mit ausdrücklicher Zustimmung des GTB gestattet. Dies gilt insbesondere für die
Vervielfältigung, Verbreitung, Bearbeitung, Veränderung, Übersetzung, Mikroverfilmung,
Speicherung und Verarbeitung in elektronischen Systemen sowie die öffentliche
Zugänglichmachung.

Dessen ungeachtet ist die Nutzung des Werks einschließlich der Übernahme des Wortlauts, der
Reihenfolge sowie Nummerierung der in dem Werk enthaltenen Kapitelüberschriften für die
Zwecke der Anfertigung von Veröffentlichungen, z. B. für das Marketing eines Kurses, gestattet.
Jede Nutzung des Werks oder von Teilen des Werks ist nur unter Nennung des GTB als Inhaber
der ausschließlichen Nutzungsrechte sowie der oben genannten Autoren als Quelle gestattet.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 3 von 73 23.11.2025
© International Software Testing Qualifications Board

Änderungsübersicht der deutschsprachigen Ausgabe
Version Datum Bemerkungen

V2.1 DE 23.11.2025 Deutschsprachige Fassung der englischen Version V2.1 des ISTQB
freigegeben

V2.0.2 DE 13.10.2020 Deutschsprachige Fassung der englischen Version V2.0.2 des ISTQB
freigegeben

V2.0 DE 31.03.2017 Neuentwickelte Fassung in deutscher Sprache auf Grundlage der Version
V1.1 (Grundlage für die englischsprachige Fassung V2.0.2 des ISTQB)
freigegeben

V1.1 DE 14.06.2015 Inhaltliche Überarbeitung und Abgleich mit dem deutschsprachigen
ISTQB-Lehrplan Certified Tester Foundation Level 2011 V1.0.1 und dem
ISTQB-Glossar V2.2 freigegeben

V1.0 DE 19.01.2011 Erste Veröffentlichung des Lehrplans unter der Bezeichnung „Certified
Automotive Softwaretester (CAST)“ freigegeben

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 4 von 73 23.11.2025
© International Software Testing Qualifications Board

Inhaltsverzeichnis

Urheberschutzvermerk ... 2
Änderungsübersicht der deutschsprachigen Ausgabe .. 3
Inhaltsverzeichnis ... 4
Danksagungen ... 7
0 Einführung in diesen Lehrplan .. 8

0.1 Zweck dieses Lehrplans ... 8
0.2 ISTQB® Certified Tester – Automotive Software Tester (CT-AuT) 8
0.3 Karriereweg für Tester .. 8
0.4 Geschäftlicher Nutzen ... 9
0.5 Lernziele und kognitive Wissensstufen ... 9
0.6 Zertifizierungsprüfung zum ISTQB® Certified Tester – Automotive Software Tester (CT-
AuT) 10
0.7 Akkreditierung ... 10
0.8 Umgang mit Normen und Standards .. 11
0.9 Detaillierungsgrad ... 11
0.10 Aufbau des Lehrplans ... 12

1 Einführung in das Testen von Software im Automotive-Bereich – 30 Minuten 13
1.1 Anforderungen aus divergierenden Projektzielen und zunehmender Produktkomplexität
 14
1.2 Projektaspekte, die von Normen beeinflusst werden.. 15
1.3 Die sechs generischen Phasen des Systemlebenszyklus .. 15
1.4 Der Beitrag und die Beteiligung des Testers am Freigabeprozess 16

2 Normen für das Testen von elektrischen/elektronischen (E/E-)Systemen – 300 Minuten 17
2.1 Automotive SPICE (ASPICE) ... 19

2.1.1 Aufbau und Struktur des Standards ... 19
2.1.2 Anforderungen des Standards .. 21

2.2 ISO 26262 ... 24
2.2.1 Funktionale Sicherheit und Sicherheitskultur ... 24
2.2.2 Integration des Testers in den Sicherheitslebenszyklus .. 24
2.2.3 Gliederung und testspezifische Anteile der Norm .. 25
2.2.4 Einfluss der Kritikalität auf die Testumfänge .. 26
2.2.5 Anwendung des aus CTFL® bekannten Wissens im Kontext der ISO 26262 27

2.3 AUTOSAR ... 29

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 5 von 73 23.11.2025
© International Software Testing Qualifications Board

2.3.1 Projektziele von AUTOSAR .. 29
2.3.2 Allgemeine Struktur von AUTOSAR [informativ] .. 29
2.3.3 Einfluss von AUTOSAR auf die Arbeit des Testers .. 30

2.4 Vergleich von ASPICE, ISO 26262 und CTFL® .. 30
2.4.1 Zielsetzung von ASPICE und ISO 26262 ... 30
2.4.2 Vergleich der Teststufen zwischen ASPICE, ISO 26262 und CTFL® 30

3 Testen in einer virtuellen Umgebung – 160 Minuten .. 32
3.1 Testumgebung im Allgemeinen .. 33

3.1.1 Motivation für eine Testumgebung in der Entwicklung im Automobilbereich 33
3.1.2 Allgemeine Teile einer Testumgebung ... 33
3.1.3 Unterschiede zwischen Closed-Loop- und Open-Loop-Systemen 33
3.1.4 Datenbasen und Kommunikationsprotokolle eines Steuergeräts 34

3.2 Testen in XiL-Testumgebungen .. 35
3.2.1 Model-in-the-Loop (MiL) ... 35
3.2.2 Software-in-the-Loop (SiL) ... 36
3.2.3 Hardware-in-the-Loop (HiL) .. 36
3.2.4 Vergleich der XiL-Testumgebungen ... 37

4 Statische und dynamische Tests – 230 Minuten .. 42
4.1 Statischer Test .. 43

4.1.1 Die MISRA-C-Programmierrichtlinien ... 43
4.1.2 Qualitätsmerkmale für Anforderungsreviews ... 43

4.2 Dynamischer Test ... 45
4.2.1 Modifizierter Bedingungs-/Entscheidungstest .. 45
4.2.2 Back-to-Back-Test .. 46
4.2.3 Fehlereinfügungstest .. 47
4.2.4 Anforderungsbasierter Test .. 47
4.2.5 Kontextabhängige Auswahl .. 48

5 Liste der Abkürzungen .. 50
6 Domänenspezifische Begriffe ... 53
7 Referenzen ... 57

7.1 Normen ... 57
7.2 ISTQB®-Dokumente .. 58
7.3 Glossar-Referenzen .. 58

8 Marken .. 59
9 Anhang A – Lernziele/kognitive Stufen... 60

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 6 von 73 23.11.2025
© International Software Testing Qualifications Board

Stufe 1: Erinnern (K1) .. 60
Stufe 2: Verstehen (K2) ... 60
Stufe 3: Anwenden (K3) ... 61

10 Anhang B – Verfolgbarkeitsmatrix des geschäftlichen Nutzens (Business Outcomes) mit
Lernzielen ... 62

11 Anhang C – Versionshinweise .. 71
12 Anhang D – Automotive-Datenbasen und Kommunikationsprotokolle 72
13 Index ... 73

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 7 von 73 23.11.2025
© International Software Testing Qualifications Board

Danksagungen
Die Generalversammlung des ISTQB® hat das englische Dokument am 2. Mai 2025 offiziell
freigegeben.

Es wurde von einem Team des German Testing Board e. V. erstellt: Ralf Bongard (Leitung),
Klaudia Dussa-Zieger, Matthias Friedrich, Thorsten Geiselhart, Horst Pohlmann (Product Owner),
Ralf Reißing, Alexander Schulz.

Die folgenden Personen waren am Review, der Kommentierung und der Abstimmung über den
englischen Lehrplan beteiligt:

Aktuelle Ausgabe (V2.1): Laura Albert, Ádám Bíró, Darvay Tamás Béla, Yuliia Fomuliaieva,
Matthias Hamburg, Jarek Hryszko, Joanna Kazun, Imre Mészáros, Krisztián Miskó, Gary
Mogyorodi, Ingvar Nordström, Mirosław Panek, Lukáš Piška, Meile Posthuma, Márton Siska, Klaus
Skafte, Radosław Smilgin, Michael Stahl.

Das Team dankt Gary Mogyorodi für sein Technisches Review.

Die folgenden Personen waren am Review, der Kommentierung und der Abstimmung über den
lokalisierten Lehrplan beteiligt:

Aktuelle Ausgabe (V2.1): Ralf Bongard (Leitung), Klaudia Dussa-Zieger, Matthias Friedrich,
Thorsten Geiselhart, Michael Humm, Horst Pohlmann, Ralf Reißing, Matthias Hamburg.

Das Team dankt Ursula Zimpfer für ihr Lektorat.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 8 von 73 23.11.2025
© International Software Testing Qualifications Board

0 Einführung in diesen Lehrplan

0.1 Zweck dieses Lehrplans
Dieser Lehrplan bildet die Grundlage für den ISTQB® Certified Tester – Automotive Software
Tester. Das ISTQB® stellt diesen Lehrplan folgenden Adressaten zur Verfügung:

1. Nationalen Mitgliedboards, die den Lehrplan in ihre Sprache(n) übersetzen und
Schulungsanbieter akkreditieren. Die nationalen Mitgliedboards dürfen den Lehrplan an
die Anforderungen ihrer nationalen Sprache anpassen und Referenzen hinsichtlich lokaler
Veröffentlichungen berücksichtigen.

2. Zertifizierungsstellen zur Ableitung von Prüfungsfragen in ihrer nationalen Sprache, die an
die Lernziele dieses Lehrplans angepasst sind.

3. Schulungsanbietern zur Erstellung von Lehrmaterialien und zur Bestimmung
angemessener Lehrmethoden.

4. Zertifizierungskandidaten zur Vorbereitung auf die Zertifizierungsprüfung (entweder als
Teil einer Schulung oder unabhängig davon).

5. Der internationalen Software- und Systementwicklungs-Community zur Förderung des
Berufsbildes des Software- und Systemtestens und als Grundlage für Bücher und
Fachartikel.

0.2 ISTQB® Certified Tester – Automotive Software Tester (CT-AuT)
Die Qualifikation zum Automotive Software Tester richtet sich an alle, die mit dem Testen von
Software im Automobilbereich zu tun haben. Dazu gehören beispielsweise Tester, Testanalysten,
Testingenieure, Testberater, Testmanager, Abnahmetester und Softwareentwickler. Die
Qualifikation zum Automotive Software Tester ist auch für alle geeignet, die ein grundlegendes
Verständnis für das Testen von Software im Automobilbereich anstreben, wie z. B.
Projektmanager, Sicherheitsmanager, Qualitätsmanager, Softwareentwicklungsmanager,
Business-Analysten, IT-Direktoren und Unternehmensberater.

0.3 Karriereweg für Tester

Das ISTQB®-Programm unterstützt Tester in allen Phasen ihrer Laufbahn. Personen, die die
ISTQB®-Zertifizierung Certified Tester – Automotive Software Tester (CT-AuT) erlangen, sind
möglicherweise auch an den Core Advanced Levels (Test Analyst, Test Automation Engineer und
Test Management) interessiert. Für alle, die ihre Fähigkeiten im Bereich des Testens in einer
agilen Umgebung ausbauen möchten, kommen die Zertifizierungen ISTQB® Agile Technical Tester
oder ISTQB® Agile Test Leadership at Scale in Frage. Darüber hinaus bieten Spezialistenmodule
Zertifizierungsprodukte an, die sich auf bestimmte Testtechnologien und -ansätze, bestimmte
Qualitätsmerkmale und Teststufen oder das Testen in bestimmten Industriebereichen
konzentrieren. Aktuelle Informationen über das ISTQB®-Certified-Tester-Schema finden Sie unter
www.istqb.org, zu dem Berufsbild Testen des GTB unter www.gtb.de/der-certified-tester/berufsbild/
oder auf den Seiten der nationalen Boards, wie z. B. www.gtb.de (Deutschland),
www.swisstestingboard.org (Schweiz) oder www.austriantestingboard.at (Österreich).

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 9 von 73 23.11.2025
© International Software Testing Qualifications Board

0.4 Geschäftlicher Nutzen
In diesem Abschnitt werden die geschäftlichen Nutzen (Business Outcomes, BO) aufgeführt, die
von Kandidaten erwartet werden, die die Zertifizierung zum ISTQB® Certified Tester – Automotive
Software Tester (CT-AuT) erlangt haben.

Ein ISTQB® Certified Tester – Automotive Software Tester (CT-AuT) kann ...

AuT-BO1 … effektiv in einem Testteam zusammenarbeiten. ("Zusammenarbeiten")

AuT-BO2 … die aus dem ISTQB® Certified Tester Foundation Level (CTFL®) bekannten
Testverfahren an die spezifischen Anforderungen des Projekts anpassen.
("Anpassen")

AuT-BO3 … die grundlegenden Anforderungen der relevanten Normen (z. B. Automotive
SPICE® und ISO 26262) bei der Auswahl geeigneter Testverfahren
berücksichtigen. ("Auswählen")

AuT-BO4 … das Testteam bei der risikobasierten Planung der Testaktivitäten
unterstützen und bekannte Strukturierungs- und Priorisierungselemente
anwenden. ("Unterstützen & anwenden")

AuT-BO5 … virtuelle Testumgebungen (d. h. MiL, SiL und HiL) anwenden. ("Anwenden")

0.5 Lernziele und kognitive Wissensstufen
Die Lernziele (Learning Objectives, LO) unterstützen den geschäftlichen Nutzen und dienen zur
Ausarbeitung der Prüfungen zum ISTQB® Certified Tester – Automotive Software Tester (CT-AuT).

Die spezifischen Lernziele und ihre Wissensstufen sind zu Beginn jedes Kapitels aufgeführt und
wie folgt klassifiziert:

• K1: Erinnern

• K2: Verstehen

• K3: Anwenden

Weitere Einzelheiten und Beispiele für Lernziele finden Sie in Anhang A.

Für alle Begriffe, die als Schlüsselbegriffe direkt unter den Kapitelüberschriften aufgeführt sind,
muss die korrekte Bezeichnung und Definition aus dem ISTQB®-Glossar bekannt sein (K1), auch
wenn sie nicht ausdrücklich im Lernziel erwähnt werden.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 10 von 73 23.11.2025
© International Software Testing Qualifications Board

0.6 Zertifizierungsprüfung zum ISTQB® Certified Tester –
Automotive Software Tester (CT-AuT)

Die Prüfung zum ISTQB® Certified Tester – Automotive Software Tester (CT-AuT) basiert auf
diesem Lehrplan. Zur Beantwortung einer Prüfungsfrage kann die Verwendung von Material aus
mehr als einem Abschnitt dieses Lehrplans erforderlich sein. Alle Abschnitte des Lehrplans sind
prüfungsrelevant, mit Ausnahme der Einführung und der Anhänge.

Im Lehrplan sind Standards und Fachbücher als Referenzen genannt, ihr Inhalt ist jedoch nicht
prüfungsrelevant, abgesehen von dem, was im vorliegenden Lehrplan in zusammengefasster
Form enthalten ist.

Weitere Einzelheiten finden sich im Dokument "Exam Structures and Rules" für den ISTQB®
Certified Tester – Automotive Software Tester (CT-AuT) V2.1.

Voraussetzung für die Teilnahme an der Zertifizierung zum ISTQB® Certified Tester – Automotive
Software Tester (CT-AuT) ist, dass die Kandidaten das ISTQB®-Foundation-Level-Zertifikat und
ein Interesse an Softwaretest in Entwicklungsprojekten der Automobilindustrie haben. Es wird
jedoch dringend empfohlen, dass die Kandidaten auch:

• über ein Mindestmaß an Erfahrung in der Softwareentwicklung oder im Testen von
Software verfügen, z. B. sechs Monate Erfahrung als Softwaretester oder -entwickler, oder

• einen Kurs absolvieren, der nach dem ISTQB®-Standard akkreditiert ist (von einem der
nationalen Mitgliedboards des ISTQB®), und/oder

• erste Erfahrungen im Testen von elektrischen/elektronischen (E/E-)Systemen in
Entwicklungsprojekten der Automobilbranche gesammelt haben.

Eingangsvoraussetzung für die Teilnahme: Das ISTQB®-Foundation-Level-Zertifikat muss vor der
Zertifizierungsprüfung zum Certified Tester – Automotive Software Tester erworben werden.

0.7 Akkreditierung
Ein nationales ISTQB®-Mitgliedboard kann Schulungsanbieter akkreditieren, deren Lehrmaterial
diesem Lehrplan entspricht. Schulungsanbieter sollten die Akkreditierungsrichtlinien vom
nationalen Mitgliedboard beziehen (in Deutschland: German Testing Board e. V.; in der Schweiz:
Swiss Testing Board; in Österreich: Austrian Testing Board) oder von der Stelle, die die
Akkreditierung in dessen Auftrag durchführt. Eine akkreditierte Schulung wird als konform mit
diesem Lehrplan anerkannt und darf eine ISTQB®-Prüfung als Teil der Schulung enthalten.

Die Akkreditierungsrichtlinien für diesen Lehrplan folgen den allgemeinen
Akkreditierungsrichtlinien, die von der ISTQB®-Arbeitsgruppe "Processes Management and
Compliance" veröffentlicht wurden.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 11 von 73 23.11.2025
© International Software Testing Qualifications Board

0.8 Umgang mit Normen und Standards
Internationale Normungsgremien wie IEEE und ISO haben Normen zu Qualitätsmerkmalen und
zum Testen von Software herausgegeben. Auf solche Normen wird in diesem Lehrplan verwiesen.
Der Zweck dieser Verweise ist es, einen Rahmen zu schaffen (wie bei den Verweisen auf ISO/IEC
25010 bezüglich der Qualitätsmerkmale) oder eine Quelle für zusätzliche Informationen zu bieten,
falls der Leser dies wünscht. Bitte beachten Sie, dass in den ISTQB®-Lehrplänen Normdokumente
als Referenz verwendet werden. Die Inhalte der Normen sind nicht prüfungsrelevant. Weitere
Informationen zu Normen finden Sie im Kapitel 7 „Referenzen“.

0.9 Detaillierungsgrad
Der Detaillierungsgrad dieses Lehrplans ermöglicht international einheitliche Kurse und Prüfungen.
Um dieses Ziel zu erreichen, besteht der Lehrplan aus folgenden Bestandteilen:

• Allgemeinen Lehrzielen, die die Absicht des Certified Tester – Automotive Software Tester
beschreiben.

• Einer Liste von Begriffen, die die Studierenden kennen müssen.

• Lernzielen für jeden Wissensbereich, die das zu erreichende kognitive Lernergebnis
beschreiben.

• Einer Beschreibung der Schlüsselkonzepte, einschließlich Verweisen auf Quellen wie
anerkannte Literatur oder Normen.

Der Inhalt des Lehrplans beschreibt nicht das gesamte Wissensgebiet des Softwaretestens im
automobilen Kontext. Er spiegelt den Detaillierungsgrad wider, der in den Schulungen zum
ISTQB® Certified Tester – Automotive Software Tester (CT-AuT) abgedeckt werden soll. Er
konzentriert sich auf Testkonzepte und -verfahren, die für Softwareprojekte im Automobilbereich
gelten.

Der Lehrplan verwendet die Terminologie (d. h. den Namen und die Bedeutung), die beim Testen
von Software und bei der Qualitätssicherung verwendet wird, gemäß dem ISTQB®-Glossar.

Für die Terminologie verwandter Disziplinen wird auf deren jeweilige Glossare verwiesen: ISO
26262 für funktionale Sicherheit (safety engineering) und das IREB-Glossar für Requirements
Engineering.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 12 von 73 23.11.2025
© International Software Testing Qualifications Board

0.10 Aufbau des Lehrplans
Es gibt vier Kapitel mit prüfbarem Inhalt. Die Überschrift auf der obersten Ebene jedes Kapitels gibt
die Zeit für das Kapitel an. Unterhalb der Kapitelebene wird keine Zeitangabe gemacht. Für
akkreditierte Lehrgänge fordert der Lehrplan mindestens 12,0 Unterrichtsstunden (720 Minuten),
die sich wie folgt auf die vier Kapitel verteilen:

• Kapitel 1: Einführung in das Testen von Software im Automotive-Bereich (30 Minuten)

o Die Tester lernen die Herausforderungen bei der Entwicklung von
Automobilprodukten kennen, darunter gegensätzliche Ziele, zunehmende
Komplexität und die Auswirkungen von Normen auf Zeit, Kosten, Qualität und
Risiken.

o Sie lernen auch die sechs Phasen eines Produktlebenszyklus und ihre Rolle
bei der Freigabe von Produkten kennen.

• Kapitel 2: Normen für das Testen von elektrischen/elektronischen (E/E-)Systemen
(300 Minuten)

o Die Tester lernen ASPICE mit seinen Teststufen, testrelevanten Prozessen,
Anforderungen an die Dokumentation und die Rolle einer Teststrategie sowie
die Erwartungen an die Verfolgbarkeit und die Teststrategie von ASPICE
kennen.

o Für ISO 26262 konzentrieren sich die Tester auf die Sicherheitskultur,
Automotive Safety Integrity Levels sowie Testverfahren und verstehen ihre
Rolle innerhalb des Sicherheitslebenszyklus.

o Die Tester verstehen auch den Einfluss von AUTOSAR auf das Testen und
vergleichen die Ziele von ASPICE, ISO 26262 und CTFL® sowie die
jeweiligen Teststufen.

• Kapitel 3: Testen in einer virtuellen Umgebung (160 Minuten)

o Die Tester lernen den Zweck, die Struktur und die wesentlichen Funktionen
von virtuellen Testumgebungen im Automobilbereich kennen, einschließlich
Closed-Loop- und Open-Loop-Systemen, und gewinnen ein Verständnis für
die verschiedenen XiL-Testumgebungen (d. h. MiL, SiL und HiL), ihre
Anwendungen, Vorteile und Grenzen.

o Sie lernen auch, wie sie jeder Testumgebung einen geeigneten Testumfang
zuordnen können.

• Kapitel 4: Statische und dynamische Tests (230 Minuten)

o Die Tester lernen, wie sie Programmierrichtlinien nach MISRA-C und
Qualitätsmerkmale von Anforderungen nach der ISO/IEC/IEEE 29148
erklären und anwenden können.

o Die Tester erstellen Testfälle für modifizierte Bedingungs-
/Entscheidungsüberdeckungen, verstehen Fehlereinfügungstests und Back-
to-Back-Tests und wählen geeignete Testverfahren und Testansätze je nach
Projektkontext aus.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 13 von 73 23.11.2025
© International Software Testing Qualifications Board

1 Einführung in das Testen von Software im Automotive-
Bereich – 30 Minuten

Schlüsselbegriffe
keine

Lernziele für Kapitel 1 Der Lernende kann ...
1.1 Anforderungen aus divergierenden Projektzielen und zunehmender Produktkomplexität
AuT-1.1 (K2) … anhand von Beispielen die Herausforderungen, die sich bei der

Produktentwicklung in der Automobilindustrie aus divergierenden Projektzielen
und der zunehmenden Produktkomplexität ergeben, erläutern

1.2 Projektaspekte, die von Normen beeinflusst werden
AuT-1.2 (K1) … Projektaspekte, die von Normen beeinflusst werden (z. B. Zeit, Kosten,

Qualität, Projektrisiken und Produktrisiken), wiedergeben

1.3 Die sechs generischen Phasen des Systemlebenszyklus
AuT-1.3 (K1) … die sechs generischen Phasen des Systemlebenszyklus nach

ISO/IEC/IEEE 24748-1 wiedergeben

1.4 Der Beitrag und die Beteiligung des Testers am Freigabeprozess
AuT-1.4 (K1) … sich an die Rolle (d. h. Beitrag und Mitarbeit) des Testers im

Freigabeprozess erinnern

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 14 von 73 23.11.2025
© International Software Testing Qualifications Board

Einführung
Einer der sieben Grundsätze des Softwaretestens lautet "Testen ist abhängig vom Umfeld". Dieses
Kapitel skizziert das Umfeld der E/E-Systementwicklung, in dem ein "Automotive Software Tester"1
arbeitet. Auf der einen Seite führen Zielkonflikte wie Kosteneffizienz, Sicherheitsanforderungen
und schnelle Markteinführung, zunehmende Komplexität und die intensive Nachfrage nach
innovativen Lösungen zu besonderen Herausforderungen. Auf der anderen Seite bilden Normen
und der Lebenszyklus von Fahrzeugen den Rahmen, in dem der Tester tätig ist. Letztlich arbeitet
der Tester an der Freigabe von Software und Systemen.

1.1 Anforderungen aus divergierenden Projektzielen und
zunehmender Produktkomplexität

Erstausrüster (OEMs) und Zulieferer bringen trotz des zunehmenden Kostendrucks häufiger als
früher neue Fahrzeugmodelle2 auf den Markt. Die folgenden Aspekte beeinflussen diesen
Prozess:

• Zunehmende Modellvielfalt und Komplexität:
Um besser auf die individuellen Bedürfnisse der Endkunden eingehen zu können, bieten die
OEMs immer mehr Fahrzeugmodelle an. Dadurch sinken jedoch die Stückzahlen pro Modell.
Um den daraus resultierenden Anstieg der Entwicklungs- und Produktionskosten zu decken,
entwickeln die Hersteller mehrere Modelle als Varianten einer gemeinsamen Plattform. Die
Entwicklung einer Plattform ist jedoch weitaus komplexer als die Entwicklung eines einzelnen
Modells, da die vielen möglichen Varianten beherrscht werden müssen.

• Wachsender Umfang der Funktionalität:
Der Endkunde verlangt immer mehr Innovationen bei gleichzeitiger Beibehaltung der
bestehenden Funktionen, wodurch der Funktionsumfang zunimmt.

• Zunehmende Anzahl von Konfigurationen:
Der Endkunde will sein Fahrzeugmodell an seine individuellen Wünsche anpassen. Dies
erfordert eine Vielzahl von Konfigurationen für ein einziges Fahrzeugmodell, auch in Bezug auf
die Funktionalität.

• Erhöhte Anforderungen an die Qualität:
Trotz steigender Funktionalität und Komplexität erwartet der Endkunde die gleiche oder sogar
eine höhere Qualität des Fahrzeugs und seiner Funktionen.

Da die Projektziele – Zeit, Kosten und Umfang – miteinander konkurrieren (bekannt als das
"Projektmanagement-Dreieck", wobei die Qualität oft als ein Aspekt des Umfangs betrachtet wird),
müssen OEMs und Zulieferer eine effizientere Systementwicklung anstreben, die trotz
zunehmender Komplexität, steigender Qualitätsanforderungen und kleinerer Budgets kürzere
Entwicklungszeiten ermöglicht.

1 Im Folgenden wird nur noch der Begriff "Tester" verwendet: Er ist als die Kurzform von "Automotive Software Tester" zu
verstehen.
2 Beispiel aus einer Studie der Unternehmensberatung Progenium: "1990 wurden nur 101 verschiedene Automodelle
angeboten ..., 2014 waren es bereits 453."
Darüber hinaus bringt "die nächste Dekade der Mobilitätstransformation, die den Verbraucher in den Mittelpunkt stellt" neue
Herausforderungen mit sich

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 15 von 73 23.11.2025
© International Software Testing Qualifications Board

1.2 Projektaspekte, die von Normen beeinflusst werden
Normen beeinflussen wichtige Projektaspekte wie Zeit, Kosten, Qualität, Projektrisiken und
Produktrisiken:

• Normen erhöhen die Effizienz von Prozessen (z. B. durch Reduzierung der
Entwicklungszeit oder -kosten bei gleichbleibender Qualität) durch:

o einheitliche Namensgebung,

o bessere Transparenz,

o einfachere Zusammenarbeit (d. h. intern und extern),

o erhöhte Wiederverwendbarkeit und

o konsolidierte Erfahrungen ("Best Practice").

• Mit etablierten Technologierichtlinien helfen sie, Risiken und Fehlerzustände frühzeitig zu
erkennen und zu beheben.

• Normen bilden die Grundlage für Audits. So kann ein Auditor die Qualität eines Produkts
oder Prozesses beurteilen. Gleichzeitig kann der Auditor prüfen, ob die Normen den
Anforderungen entsprechen.

• Normen sind Teil der vertraglichen oder gesetzlichen Bestimmungen und Richtlinien.

Dieser Lehrplan bezieht sich u. a. auf folgende ausgewählte Normen, die für das Testen von
Software für die Automobilindustrie relevant sind:

• ISO 26262 und ASPICE, die standardisierte Prozesse und Methoden bereitstellen.

• AUTOSAR, das die Softwarearchitektur und -produkte standardisiert.

1.3 Die sechs generischen Phasen des Systemlebenszyklus
Der Systemlebenszyklus eines Autos und seiner Komponenten3 beginnt mit der Produktidee und
endet mit der Außerbetriebnahme. Er umfasst Entwicklungs-, Geschäfts-, Logistik- und
produktionstechnische Prozesse.

Meilensteine mit definierten Eingangs- und Endekriterien sorgen für reife Prozesse und
strukturieren den Systemlebenszyklus4 in sechs Phasen mit typischen Testaktivitäten nach
[ISTQB_CTFL]:

• Konzept: Testplanung zur Festlegung der Teststrategie und der Testziele

• Entwicklung: Testanalyse, Testentwurf, Testdurchführung, Testausführung,
Testüberwachung, Teststeuerung und Testabschluss sichern die Qualität.

• Produktion: Testen der End-of-Line, um die Bereitschaft zu überprüfen.

• Betrieb: Normalerweise werden keine Testaktivitäten durchgeführt.

• Wartung: Wartungstests zur Sicherstellung der kontinuierlichen Zuverlässigkeit

• Außerbetriebnahme: Migrationstests validieren die Stilllegung oder Datenübertragung.

3 Steuergeräte (Hardware und Software) sowie Komponenten.
4 Der Sicherheitslebenszyklus der ISO 26262 besteht aus ähnlichen Phasen.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 16 von 73 23.11.2025
© International Software Testing Qualifications Board

Der weitverbreitete Produktentwicklungsprozess in der Automobilindustrie fasst diese Phasen oft in
drei Hauptstufen zusammen: Konzept, Entwicklung und Produktion, wo die meisten Tests und
Freigaben stattfinden.

1.4 Der Beitrag und die Beteiligung des Testers am Freigabeprozess
In der Automobilbranche erreicht ein Projekt einen Meilenstein, indem eine Freigabe erklärt wird,
sobald die Ziele als erreicht gelten. Von diesem Zeitpunkt an wird davon ausgegangen, dass das
Freigabeobjekt die für seinen Verwendungszweck erforderliche Reife besitzt. Das Freigabeobjekt
umfasst die Softwarekonfiguration einschließlich Parametrisierung und ggf. Hardware und
Mechanik sowie die begleitende Dokumentation.

Der Tester liefert mit dem abschließenden Testbericht wichtige Informationen für den
Freigabeprozess:

• Getestete Elemente

• Bewertete Qualitätsmerkmale (z. B. Antwortzeit und Ressourcenverbrauch)

• Bekannte Fehlerzustände

• Produktmetriken

• Informationen für die Freigabeempfehlung bei Erreichen der Endekriterien auf der Grundlage
der Freigabestufe gemäß den Best Practice Guidelines (z. B. Erprobung auf abgesperrtem
Gelände, Erprobung auf öffentlichen Straßen und Verbauempfehlungen)

Darüber hinaus beteiligt sich der Tester an der Erstellung weiterer für die Freigabe relevanter
Ergebnisse:

• Prioritäten setzen und an der Entscheidung über Änderungen mitwirken

• Priorisierung von Features für die Reihenfolge der Implementierung

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 17 von 73 23.11.2025
© International Software Testing Qualifications Board

2 Normen für das Testen von
elektrischen/elektronischen (E/E-)Systemen – 300
Minuten

Schlüsselbegriffe
funktionale Sicherheit, Methodentabelle

Domänenspezifische Schlüsselbegriffe
Automotive Safety Integrity Level (ASIL), Softwareverifizierung, Systemverifizierung

Lernziele für Kapitel 2 Der Lernende kann ...
2.1 Automotive SPICE (ASPICE)
AuT-2.1.1.1 (K1) … die zwei Dimensionen von ASPICE wiedergeben

AuT-2.1.1.3 (K2) … die Fähigkeitsstufen 0 bis 3 von ASPICE erläutern

AuT-2.1.2.1 (K1) … sich an den Zweck der testspezifischen Prozesse von ASPICE erinnern

AuT-2.1.2.2 (K2) … die Bedeutung der vier Bewertungsstufen und der Fähigkeitsindikatoren
von ASPICE aus Sicht des Testens erläutern

AuT-2.1.2.3 (K2) … die Anforderungen von ASPICE an eine Teststrategie einschließlich der
Kriterien für die Regressionsverifizierung erläutern

AuT-2.1.2.4 (K1) … sich an die Anforderungen von ASPICE an Testmittel erinnern

AuT-2.1.2.5 (K3) … Maßnahmen zur Software-Unit-Verifizierung anwenden

AuT-2.1.2.6 (K2) … die Anforderungen an die Verfolgbarkeit von ASPICE aus Sicht des
Testens erläutern

2.2 ISO 26262
AuT-2.2.1.1 (K2) … das Ziel der funktionalen Sicherheit für E/E-Systeme erläutern

AuT-2.2.1.2 (K1) … den Beitrag des Testers zur Sicherheitskultur nennen

AuT-2.2.2 (K2) … die Rolle des Testers im Rahmen des Sicherheitslebenszyklus nach ISO
26262 diskutieren

AuT-2.2.3.2 (K1) … die Teile der ISO 26262 nennen, die für den Tester relevant sind

AuT-2.2.4.1 (K1) … die Kritikalitätsstufen des ASIL wiedergeben

AuT-2.2.4.2 (K2) … den Einfluss des ASIL auf die Testverfahren und Testarten für statische
und dynamische Tests und den daraus resultierenden Testumfang erläutern

AuT-2.2.5 (K3) … die Methodentabellen der ISO 26262 anwenden

2.3 AUTOSAR
AuT-2.3.1 (K1) … die Projektziele von AUTOSAR wiedergeben

AuT-2.3.3 (K1) … sich an den Einfluss von AUTOSAR auf die Arbeit des Testers erinnern

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 18 von 73 23.11.2025
© International Software Testing Qualifications Board

2.4 Vergleich von ASPICE, ISO 26262 und CTFL®
AuT-2.4.1 (K1) … die unterschiedlichen Ziele von ASPICE und ISO 26262 wiedergeben

AuT-2.4.2 (K2) … die Unterschiede zwischen ASPICE, ISO 26262 und CTFL® in Bezug auf
die Teststufen erläutern

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 19 von 73 23.11.2025
© International Software Testing Qualifications Board

2.1 Automotive SPICE (ASPICE)
Einführung
Prozessverbesserung verfolgt den Ansatz, dass die Qualität eines Systems von der Qualität der
Prozesse in der Entwicklung beeinflusst wird. Prozessmodelle bieten einen Ansatz für
Verbesserungen, indem sie die Prozessfähigkeit einer Organisationseinheit oder eines Projekts im
Vergleich zum Referenzmodell messen. Darüber hinaus dient das Modell als Rahmen für die
Verbesserung der Prozesse einer Organisationseinheit oder eines Projekts unter Verwendung der
Assessment-Ergebnisse.

Seit 2001 haben die SPICE5 User Group und die Automotive Special Interest Group (AUTOSIG)
ASPICE entwickelt. Seit der Veröffentlichung im Jahr 2005 ist der Standard in der
Automobilindustrie fest etabliert. Alle Aussagen in diesem Abschnitt beziehen sich auf die ASPICE-
Version 4.0.

2.1.1 Aufbau und Struktur des Standards
2.1.1.1 Die zwei Dimensionen von ASPICE

ASPICE definiert ein Bewertungsmodell mit zwei zentralen Dimensionen der Bewertung:

In der Prozessdimension definiert ASPICE das Prozessreferenzmodell (PRM). Das PRM dient
als Referenz, um die Prozesse der Organisation damit zu vergleichen, so dass sie bewertet und
verbessert werden können. Für jeden Prozess definiert ASPICE den Zweck, die Ergebnisse, die
erforderlichen Tätigkeiten (d. h. Basispraktiken) und die Informationselemente (d. h.
Arbeitsergebnisse und Arbeitsprodukte).

In der Fähigkeitsdimension definiert ASPICE mehrere Prozessattribute (d. h. messbare
Merkmale), die das Fähigkeitsniveau unterteilen. Für jeden Prozess gibt es generische und
prozessspezifische Attribute. Die ISO/IEC 33020 dient als Grundlage für die Bewertung der
Prozessfähigkeit.

Mit Hilfe dieses Modells ist es möglich, die Prozesse (d. h. die Prozessdimension) hinsichtlich ihrer
Fähigkeit (d. h. die Fähigkeitsdimension) zu bewerten.

2.1.1.2 Prozesskategorien in der Prozessdimension [informativ]

ASPICE gliedert Prozesse in Gruppen, die wiederum in Kategorien eingeteilt werden:

Zu den primären Lebenszyklusprozessen gehören alle Prozesse, die als Schlüsselprozesse
dienen:

• Prozessgruppe Beschaffung (ACQ)

• Prozessgruppe Support (SPL)

• Prozessgruppe Systementwicklung (SYS)

• Prozessgruppe Softwareentwicklung (SWE)

• Prozessgruppe Maschinelles Lernen (MLE)

• Prozessgruppe Hardwareentwicklung (HWE)

• Prozessgruppe Validierung (VAL)

5 Akronym für "Software Process Improvement and Capability Determination".

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 20 von 73 23.11.2025
© International Software Testing Qualifications Board

Die unterstützenden Lebenszyklusprozesse umfassen alle Prozesse, die andere Prozesse
unterstützen:

• Unterstützende Prozessgruppe (SUP)

Die organisatorischen Lebenszyklusprozesse umfassen alle Prozesse, die die
Unternehmensziele unterstützen:

• Prozessgruppe Management (MAN)

• Prozessgruppe Prozessverbesserung (PIM)

• Prozessgruppe Wiederverwendung (REU)

Für den Tester sind die Prozessgruppen Systementwicklung (SYS) und Softwareentwicklung
(SWE) von besonderem Interesse, eventuell auch die Prozessgruppen MLE, VAL und HWE.

2.1.1.3 Fähigkeitsstufen (Capability Level, CL) in der Fähigkeitsdimension

Der Assessor bewertet die Prozessfähigkeit mit Hilfe eines sechsstufigen Bewertungssystems
(d. h. durch Darstellung der Stufen). ASPICE definiert die Fähigkeitsstufen 0 bis 36 wie folgt:

• Stufe 0 (unvollständiger Prozess): Der Prozess ist nicht implementiert oder erreicht nicht
seinen Prozesszweck. Auf dieser Stufe gibt es wenig oder keine Hinweise auf eine
systematische Erreichung des Prozessergebnisses. Beispiel: Der Tester prüft nur einen
geringen Teil der Anforderungen.

• Stufe 1 (durchgeführter Prozess): Der im Projekt implementierte Prozess erfüllt seinen
Prozesszweck (wird aber möglicherweise uneinheitlich ausgeführt). Beispiel: Es ist keine
vollständige Planung für einen Testprozess sichtbar. Der Tester kann jedoch den
Erfüllungsgrad der Anforderungen aufzeigen.

• Stufe 2 (gesteuerter Prozess): Das Projekt plant und überwacht den Testprozess bei
seiner Testdurchführung. Es passt unter Umständen den Ablauf der Testdurchführung an
die Testziele an. Die Anforderungen an die Arbeitsprodukte werden definiert. Ein
Projektmitglied reviewt die Arbeitsprodukte und gibt sie frei. Beispiel: Der Testmanager
legt die Testziele fest, plant die Testaktivitäten und steuert den Testprozess. Dazu gehört
auch, auf Abweichungen entsprechend zu reagieren.

• Stufe 3 (etablierter Prozess): Das Projekt verwendet einen standardisierten Testprozess,
und die Befunde werden zur ständigen Verbesserung genutzt. Beispiel: Es gibt eine
organisationsweite Teststrategie. Nach Testabschluss arbeitet der Testmanager an deren
Weiterentwicklung.

6 Die Fähigkeitsstufen 4 und 5 sind derzeit nicht im Fokus der Automobilindustrie.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 21 von 73 23.11.2025
© International Software Testing Qualifications Board

2.1.2 Anforderungen des Standards
2.1.2.1 Testspezifische Prozesse von ASPICE

ASPICE definiert Testprozesse entsprechend allen Prozessen der Software- und
Systementwicklung7:

• Software-Unit-Verifizierung (SWE.4) fordert statische und dynamische Tests. Sie bewertet
die Komponenten der Software auf der Grundlage ihres detaillierten Entwurfs (SWE.3).

• Softwarekomponentenverifizierung und Integrationsverifizierung (SWE.5) bewertet die
integrierte Software auf der Grundlage des Softwarearchitekturentwurfs (SWE.2).

• Softwareverifizierung (SWE.6) bewertet die integrierte Software auf der Grundlage der
Analyse der Softwareanforderungen (SWE.1).

• Systemintegration und Integrationsverifizierung (SYS.4) bewertet das integrierte System
auf der Grundlage des Systemarchitekturentwurfs (SYS.3).

• Systemverifizierung (SYS.5) bewertet das integrierte System auf der Grundlage der
Analyse der Systemanforderungen (SYS.2).

2.1.2.2 Bewertungsstufen und Fähigkeitsindikatoren

Ein Assessor kann die Prozessfähigkeit über Fähigkeitsindikatoren bewerten. ASPICE definiert sie
für 9 Prozessattribute (PA). Für die Fähigkeitsstufen 1 bis 3 sind sie wie folgt definiert (am Beispiel
von SWE.6 in Klammern):

• PA 1.1: Prozessattribut Prozessdurchführung (z. B. der Tester orientiert sich am
Testprozess)

• PA 2.1: Prozessattribut Testdurchführung (z. B. der Tester plant, überwacht und steuert
die Testaktivitäten)

• PA 2.2: Prozessattribut Arbeitsergebnismanagement8 (z. B. der Tester überprüft die
Qualität der Testmittel/Testdokumentation)

• PA 3.1: Prozessattribut Prozessdefinition (z. B. die für den Testprozess verantwortliche
Person definiert eine organisationsweite Teststrategie)

• PA 3.2: Prozessattribut Prozessanwendung/Prozessumsetzung (z. B. der Tester wendet
die in PA 3.1 definierte Teststrategie an)

Für die Prozessdurchführung definiert ASPICE zwei Arten von Fähigkeitsindikatoren:
Basispraktiken (BP) und Informationselemente (Information Items). Darüber hinaus werden
generische Praktiken (GP) und Informationselemente definiert. Die Bewertung der Prozessattribute
basiert auf dem Implementierungsgrad der Indikatoren in vier Bewertungsstufen:

• N (none): nicht erfüllt (0% bis ≤ 15%)

• P (partially): teilweise erfüllt (> 15% bis ≤ 50%)

• L (largely): weitgehend erfüllt (> 50% bis ≤ 85%)

• F (fully): vollständig erfüllt (> 85% bis ≤ 100%)

7 Ergänzend zu den hier definierten Testprozesse existiert noch die Prozessgruppe VAL. Der Zweck von VAL.1 besteht
darin, den Nachweis zu erbringen, dass das Endprodukt, das eine direkte Interaktion mit dem Endnutzer ermöglicht, die
Erwartungen hinsichtlich der beabsichtigten Verwendung in seiner vorgesehenen Betriebsumgebung erfüllt.
8 Das Arbeitsergebnismanagement gilt für alle dokumentierten Informationen.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 22 von 73 23.11.2025
© International Software Testing Qualifications Board

Damit ein Prozess einen bestimmten Fähigkeitsgrad erreicht, müssen die Fähigkeitsindikatoren
entweder weitgehend erfüllt (L) oder vollständig erfüllt (F) sein.

2.1.2.3 Teststrategie und Kriterien für die Regressionsverifizierung

ASPICE fordert für jeden Testprozess (siehe Abschnitt 2.1.2.1) ab der Teststufe 2 eine
Teststrategie (d. h. Verifizierungsmaßnahmen). Sie wird vom Testmanager im Rahmen der
konzeptionellen Testplanung entwickelt. Testrichtlinien, Projektziele sowie vertragliche und
regulatorische Anforderungen bilden die Grundlage dafür.

Der Tester ist sich des Prinzips des frühen Testens bewusst. Das gilt auch für das Testen von
Software in der Automobilumgebung. Allerdings kommt hier ein anderer Aspekt ins Spiel, denn
Testumgebungen auf höheren Teststufen sind deutlich teurer. So ist für das Testen auf höheren
Stufen speziell entwickelte und eingebettete Hardware notwendig (z. B. als Prototyp oder Unikat).
Die Teststrategie definiert die stufenspezifischen Testumgebungen, aber auch, welche Tests der
Tester in welchen Testumgebungen durchführen soll.

Die Kriterien für die Regressionsverifizierung sind ein wesentlicher Bestandteil der Teststrategie.
Sie legen die Details für die Regressionsverifizierung9 fest. Die Herausforderung liegt in der
wirtschaftlich sinnvollen Auswahl der Testfälle (d. h. im Mehrwert des Testens). Die Kriterien für die
Regressionsverifizierung legen das Testziel und den Testansatz für die Auswahl der
Regressionstests fest. Die Auswahl kann zum Beispiel risikobasiert erfolgen. Eine
Auswirkungsanalyse hilft dabei, die Bereiche zu identifizieren, auf die sich der Tester bei den
Regressionstests konzentrieren muss. Der Testmanager kann den Tester aber auch auffordern,
alle automatisierten Testfälle für jedes Release zu wiederholen.

2.1.2.4 Testmittel in ASPICE

ASPICE 4.0 stellt keine Anforderungen an Testmittel. Stattdessen werden Anforderungen an die
Dokumentation bestimmter Informationen gestellt, die beim Testen anfallen. Für Testaktivitäten
fordert ASPICE die folgenden Informationselemente:

• 08-60: Verifizierungsmaßnahmen (z. B. Simulationen, dynamische Tests und statische
Tests), typischerweise dokumentiert in einem Testkonzept

• 13-25: Verifizierungsergebnisse (z. B. dokumentierte Testprotokolle, Testberichte und
Fehlerberichte)

Für jedes Informationselement definiert ASPICE Beispiele für Informationselementmerkmale
(Information Item Characteristics, IIC) und -inhalte. Sie dienen als objektiver Indikator für die
Prozessdurchführung.

ISO/IEC/IEEE 29119-3 kann zur weiteren Strukturierung von Informationselementen verwendet
werden.

2.1.2.5 Messungen zur Software-Unit-Verifizierung

Der Tester verifiziert die Konformität mit dem Softwarefeindesign und mit den funktionalen und
nicht-funktionalen Anforderungen anhand der Verifizierungsmaßnahmen. Die Maßnahmen
definieren, wie der Tester den Nachweis erbringt. Der Tester kann Kombinationen von statischen
und dynamischen Testverfahren verwenden, um die Software-Units zu verifizieren.

9 Ähnlich wie die regressionsvermeidende Teststrategie im ISTQB.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 23 von 73 23.11.2025
© International Software Testing Qualifications Board

In SWE.4.BP1 fordert ASPICE die Definition von Maßnahmen (siehe Abschnitt 2.1.2.4) für die
Software-Unit-Verifizierung. Damit kann der Tester beurteilen, inwieweit die Software-Unit ihre
Anforderungen erfüllt. Die folgenden Beispiele könnten als Maßnahmen zur Software-Unit-
Verifizierung verwendet werden:

• Testfälle der Software-Unit einschließlich Testdaten

• Werkzeuggestützte statische Analyse, die die Konformität mit Programmierrichtlinien
bewertet (z. B. MISRA-C, siehe Abschnitt 4.1.1).

• Reviews für Software-Units oder Teile von Softwareeinheiten, die nicht durch eine
werkzeuggestützte statische Analyse bewertet werden können.

Wenn ein Entwickler eine Software-Unit ändert, muss der Tester diese Änderung ebenfalls
bewerten. Zu den Messungen der Software-Unit-Verifizierung gehören daher auch die Kriterien für
die Regressionsverifizierung. Das beinhaltet die Verifizierung des geänderten Codes, den
Fehlernachtest und die erneute Verifizierung der nicht geänderten Teile (statische und dynamische
Regressionstests).

2.1.2.6 Verfolgbarkeit in ASPICE

Wie im CTFL®-Lehrplan [ISTQB_CTFL] wird auch in ASPICE eine bidirektionale Verfolgbarkeit10
gefordert. Dies ermöglicht den Testern Folgendes:

• Auswirkungen zu analysieren, z. B. die Auswirkungsanalyse von Änderungen

• Eine Überdeckung zu evaluieren

• Einen Status zu verfolgen

Außerdem können die Tester auf diese Weise die Konsistenz zwischen den verknüpften
Elementen sicherstellen, sowohl textlich als auch semantisch.

ASPICE unterscheidet zwischen vertikaler und horizontaler Verfolgbarkeit:

Vertikal: ASPICE fordert, dass die Anforderungen der Stakeholder über alle Ebenen hinweg mit
den Software-Units verknüpft werden. Dabei stellt die Verknüpfung über alle Entwicklungsebenen
hinweg die Konsistenz zwischen den zugehörigen Arbeitsprodukten sicher.

Horizontal: ASPICE verlangt Verfolgbarkeit und Konsistenz zwischen den Arbeitsergebnissen der
Entwicklung und den entsprechenden Testspezifikationen und Testergebnissen.

Darüber hinaus fordert die Basispraxis SUP.10.BP4 eine bidirektionale Verfolgbarkeit zwischen
Änderungsanforderungen und den von den Änderungsanforderungen betroffenen
Arbeitsprodukten. Da Änderungsanträge häufig durch einen Fehlerzustand ausgelöst werden, wird
eine bidirektionale Verfolgbarkeit zwischen Änderungsanträgen und den entsprechenden
Fehlerberichten hergestellt.

Aufgrund der mitunter großen Anzahl von Verknüpfungen kann eine konsistente Kette von
Werkzeugen hilfreich sein. Dies ermöglicht dem Tester eine effiziente Erstellung und Verwaltung
der Abhängigkeiten.

10 Im Folgenden wird unter dem Begriff Verfolgbarkeit immer die bidirektionale Verfolgbarkeit verstanden.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 24 von 73 23.11.2025
© International Software Testing Qualifications Board

2.2 ISO 26262

2.2.1 Funktionale Sicherheit und Sicherheitskultur
2.2.1.1 Zielsetzung der funktionalen Sicherheit für E/E-Systeme

Die funktionale und technische Komplexität von eingebetteten Systemen nimmt stetig zu.
Gleichzeitig ermöglichen leistungsfähige softwarebasierte elektrische und elektronische Systeme
neue komplexe Funktionalitäten, wie z. B. die Automatisierung von Fahrfunktionen in einem
Fahrzeug.

Mit der zunehmenden Komplexität steigt auch das Risiko einer Fehlhandlung während der
Entwicklung. Die Folge kann ein (unerkannter) Fehlerzustand im System sein. Bei Systemen mit
einem inhärenten Risikopotenzial für Leib und Leben muss der verantwortliche
Sicherheitsingenieur oder Sicherheitsmanager daher mögliche Risiken analysieren. Liegt ein
tatsächliches Risiko vor, müssen geeignete Maßnahmen identifiziert werden, um mögliche
Auswirkungen auf ein akzeptables Risiko zu reduzieren.

Die Methoden zur Durchführung solcher Analysen sind in den Normen für die funktionale
Sicherheit zusammengefasst. Eine grundlegende Norm ist die IEC 61508. Aus dieser Norm hat die
Internationale Organisation für Normung (ISO) die ISO 26262 abgeleitet, die in ihrer zweiten
Auflage seit 2018 verfügbar ist.

Bei der funktionalen Sicherheit geht es darum, sicherzustellen, dass E/E-Systeme funktionieren,
ohne dass ein unangemessenes Risiko aufgrund von Gefahren durch Fehlverhalten entsteht. In
diesem Sinne ist der Begriff von anderen verwandten Begriffen wie Informationssicherheit (oder
Cybersicherheit), Produktsicherheit oder Arbeitssicherheit abzugrenzen.

Sicherheit am Arbeitsplatz und Cybersicherheit stehen nicht im Fokus der ISO 26262. Ein Mangel
an Cybersicherheit kann jedoch die funktionale Sicherheit gefährden. Sowohl funktionale
Sicherheit als auch Cybersicherheit tragen zur Produktsicherheit bei.

2.2.1.2 Beitrag des Testers zur Sicherheitskultur

Bei der Produktentwicklung nach ISO 26262 reicht es nicht aus, nur die Prozesse der eigenen
Organisation zu überwachen. Alle Beteiligten müssen einen prozessübergreifenden Ansatz
verfolgen. Jeder muss verstehen, welchen Einfluss er auf den Entwicklungsprozess und die
Sicherheit des Endprodukts hat. Dies gilt auch für externe Partner und Zulieferer.

Die Beteiligten müssen verstehen, dass ihr eigenes Handeln nicht unabhängig von anderen
Prozessen abläuft. Jeder Entwicklungsschritt ist ein wesentlicher Beitrag zur Konformität und
Umsetzung der sicherheitsrelevanten Anforderungen. Diese Verantwortung endet nicht mit der
Markteinführung. Sie dauert bis zum Ende des Sicherheitslebenszyklus an.

Die Tester tragen zur Sicherheitskultur bei, indem sie verantwortungsbewusst an den Phasen des
Softwareentwicklungslebenszyklus teilnehmen und ihre Arbeit unter ständiger Berücksichtigung
des Gesamtkontexts der Produktentwicklung ausführen.

2.2.2 Integration des Testers in den Sicherheitslebenszyklus
Der Sicherheitslebenszyklus beschreibt die sicherheitsorientierten Aktivitäten während der
Produktentwicklung. Er beginnt mit der ersten Produktidee und der Identifizierung von möglichen
Risiken. Nach der Spezifikation der daraus resultierenden Anforderungen an die Sicherheit folgt
die Umsetzung in ein konkretes Produkt. Der Sicherheitslebenszyklus endet mit der Entsorgung
des Produkts am Ende seiner Lebensdauer.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 25 von 73 23.11.2025
© International Software Testing Qualifications Board

Der Sicherheitslebenszyklus nach ISO 26262 durchläuft die folgenden Phasen:

• 1. Phase: Konzeptphase

• 2. Phase: Produktentwicklung (diese Phase endet mit der "Freigabe zur Produktion")

• 3. Phase: Produktion, Betrieb, Wartung und Stilllegung

Die Tester sind überwiegend in den ersten beiden Phasen tätig. Änderungen am Produkt innerhalb
der dritten Phase führen je nach Umfang zu einer Rückkehr zur ersten oder zweiten Phase. Daher
ist der Tester auch an Änderungen beteiligt. Auf der Grundlage der sicherheitsrelevanten
Anforderungen werden Testverfahren ausgewählt und Testfälle für die Verifizierung und
Validierung dieser Anforderungen entworfen. Die Tester führen diese Aufgaben dann in den
jeweiligen Teilphasen der Produktentwicklung durch.

Die Testplanung findet in der Regel während der Konzeptphase statt. Anpassungen an den daraus
resultierenden Dokumenten (z. B. im Testkonzept oder den Testspezifikationen) können jedoch in
jeder Phase erforderlich sein. Die Testdurchführung findet vor allem an den Übergängen zwischen
den einzelnen Phasen der Produktentwicklung statt. Zum Beispiel beim Übergang von der
Implementierung zur Softwareintegration und dann zur Hardware-Software-Integration. Darüber
hinaus tragen die Tester mit ihren Testaktivitäten zentral zum Übergang in die dritte Phase bei.

2.2.3 Gliederung und testspezifische Anteile der Norm
2.2.3.1 Aufbau und Struktur der Norm [informativ]

Die ISO 26262 besteht aus 12 Teilen:

• Vokabular (Teil 1)

• Management der Funktionalen Sicherheit (Teil 2)

• Die Phasen des Sicherheitslebenszyklus:

o Konzeptphase (Teil 3)

o Produktentwicklung auf System-, Hardware- und Softwareebene (Teile 4-6)

o Produktion und Betrieb (Teil 7)

• Unterstützende Prozesse (Teil 8)

• ASIL-orientierte und sicherheitsorientierte Analyse (Teil 9)

• Leitfaden für die Anwendung der ISO 26262 (Teil 10)

• Leitfaden für die Anwendung der ISO 26262 auf Halbleiter (Teil 11)

• Anpassung für Motorräder (Teil 12)

Abgesehen von Teil 1, Teil 10 und Teil 11 enthält jeder Teil folgende Abschnitte:

• Eine allgemeine Einführung

• Den Geltungsbereich

• Normative Referenzen

• Anforderungen an die Konformität der Norm

Danach folgen die spezifischen Themen des jeweiligen Teils. Die Struktur ihrer Beschreibung ist in
jedem Teil gleich. Die auszuführenden Aktivitäten werden durch eine in allen Teilen
wiederkehrende Struktur beschrieben:

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 26 von 73 23.11.2025
© International Software Testing Qualifications Board

• Ziel

• Allgemeine Informationen

• Einführende Informationen

• Vorbedingungen

• Weitere unterstützende Informationen

• Anforderungen und Empfehlungen

• Arbeitsergebnisse

2.2.3.2 Relevante Teile der ISO 26262 für den Tester
Für den Softwaretester ist die Verifizierung der Software und zumindest teilweise die Validierung
des Systems von zentraler Bedeutung. Neben Teil 1 (Vokabular) sind auch einige andere Teile von
besonderem Interesse: Die Teile 4 und 6 geben detaillierte Hinweise und Anforderungen bezüglich
empfohlener Maßnahmen zur Softwareverifizierung. Dies gilt für die Auswahl, den Entwurf, die
Implementierung und die Durchführung der jeweiligen Verifizierungsmaßnahmen.

Dabei konzentrieren sich diese Teile auf die test- und verifizierungsspezifischen Aspekte der
Systemebene (d. h. Teil 4, einschließlich der Validierung der Sicherheit) und der Softwareebene
(d. h. Teil 6). Sollten auch hardwarespezifische Aspekte für diese Arbeit relevant sein, finden die
Tester diese in Teil 5. Aspekte, die sowohl die Hardware als auch die Software betreffen, werden
im Rahmen des Hardware-Software-Interface (Teile 4-6) berücksichtigt.

Teil 8 kommt eine besondere Rolle zu, da dieser die prozessspezifischen Merkmale der
Verifizierung auf allen Teststufen beschreibt. Darüber hinaus sind Anforderungen an
unterstützende Prozesse zu finden, die für die Sicherstellung standardisierter Abläufe
entscheidend sind, wie z. B. das Konfigurationsmanagement und die Qualifizierung von
Werkzeugen.

In Teil 12 finden die Tester angepasste Methodentabellen, die auf der neu eingeführten Bewertung
gemäß Motorcycle Safety Integrity Level (MSIL) für Motorradprojekte basieren.

2.2.4 Einfluss der Kritikalität auf die Testumfänge
2.2.4.1 Die Kritikalitätsstufen des ASIL

Der ASIL ist ein Maß für die erforderliche Risikominderung durch Maßnahmen der funktionalen
Sicherheit. Derartige Maßnahmen können beispielsweise eine eigenständige Sicherheitsfunktion
zur Überwachung eines E/E-Systems oder der Einsatz spezifischer festgelegter Methoden sein.
Bei höheren Risiken können aufwendigere Maßnahmen erforderlich sein.

Zu Beginn des Projekts führt ein Expertenteam eine Gefährdungsanalyse und Risikobewertung
(Hazard Analysis and Risk Assessment, HARA) für das Produkt durch. Für jedes durch diese
Analyse ermitteltes Risiko bestimmt das Team einen ASIL unter Verwendung der in der Norm
festgelegten Methoden. Im nächsten Schritt legt das Team Sicherheitsziele und
Sicherheitsanforderungen fest. Diese haben denselben ASIL wie die zugrunde liegende
Gefährdung.

Die ISO 26262 definiert vier Ausprägungsgrade: von ASIL A für niedrige bis ASIL D für hohe
Sicherheitsanforderungen.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 27 von 73 23.11.2025
© International Software Testing Qualifications Board

Führen die Ergebnisse der Gefährdungsanalyse und Risikobewertung zu Anforderungen unterhalb
von ASIL A, so sind diese im Sinne der Norm nicht sicherheitsrelevant. Für solche Anforderungen
sind keine funktionalen sicherheitsrelevanten Maßnahmen erforderlich, und es reicht aus, solche
Anforderungen durch bereits bestehende Qualitätsmanagementsysteme (QMS) abzudecken. Aus
praktischen Gründen werden diese Anforderungen oft mit "QM" gekennzeichnet, um sie von ASIL-
bezogenen Anforderungen zu unterscheiden.

2.2.4.2 Einfluss des ASIL auf Testverfahren, Testarten und Testumfänge

Der ermittelte ASIL hat direkten Einfluss auf den Umfang der von den Testern durchzuführenden
Tests. Je nach Höhe des ASIL empfiehlt die Norm ISO 26262 die Durchführung unterschiedlicher
Maßnahmen oder Maßnahmenpakete. Dabei rät die Norm bei höherem ASIL zu umfangreicheren
und detaillierteren Maßnahmen. Für niedrigere ASIL ist die Durchführung spezifischer Maßnahmen
oft optional.

Die ISO 26262 legt drei Empfehlungsstufen fest: keine Empfehlung, empfohlen und dringend
empfohlen. Das allgemeine Verständnis dieser Empfehlungsstufen ist, dass eine Methode, die als
"dringend empfohlen" aufgeführt ist, angewandt werden muss. Während eine Methode, die als
"empfohlen" aufgeführt ist, angewandt werden sollte oder eine Begründung für die
Nichtanwendung angegeben werden muss. Im Falle von "keine Empfehlung" gibt die Norm keine
Empfehlung für oder gegen die Anwendung der betreffenden Maßnahme. Sie kann ohne
Bedenken als unterstützende Maßnahme verwendet werden. Ihre Durchführung ersetzt jedoch
nicht die von der ISO 26262 empfohlenen oder dringend empfohlenen Maßnahmen.

Für die Tester bedeutet dies, dass die Norm je nach ASIL spezifische Testverfahren und Testarten
für sicherheitsrelevante Systeme empfiehlt. Die Tester können nur so weit frei entscheiden, wie es
die Norm für den konkreten Fall zulässt. So werden beispielsweise für ASIL A lediglich die
Äquivalenzklassenbildung und die Grenzwertanalyse empfohlen. Für ASIL B oder höher werden
diese Techniken hingegen dringend empfohlen (siehe Abschnitt 2.2.5).

Der ASIL ist keine Eigenschaft des Gesamtprodukts. Er ist an ein konkretes Sicherheitsziel und
daraus abgeleitete Sicherheitsanforderungen gebunden. Für ein und dasselbe Produkt können
Sicherheitsanforderungen mit unterschiedlichem ASIL daher zu einem signifikanten Unterschied
beim Testaufwand führen. Dies muss von den Testern bei der Planung des Testumfangs
berücksichtigt werden.

2.2.5 Anwendung des aus CTFL® bekannten Wissens im Kontext der ISO 26262
Die ISO 26262 bietet dem Tester spezifische Empfehlungen für Testaktivitäten in Form von
Methodentabellen. Diese sind in den Teilen 4, 5, 6, 8 und 12 zu finden. Neben den für die
funktionale Sicherheit spezifischen Empfehlungen für Testprozesse und Testaktivitäten enthalten
sie auch die zu verwendenden Testverfahren.

In diesem Zusammenhang verwendet die Norm den Begriff "Methode", der sich auf alle
anwendbaren Testverfahren oder Testaktivitäten bezieht. Die Terminologie der funktionalen
Sicherheit weicht an dieser Stelle leicht von den Begriffen des ISTQB® ab. Für den Tester sind die
folgenden Methoden der ISO 26262 von besonderem Interesse:

• Testverfahren (z. B. Äquivalenzklassenbildung und Grenzwertanalyse)

• Verfahren zur Testdurchführung (z. B. Simulation oder Prototyp einer Komponente oder
eines Systems)

• Testarten (z. B. nicht-funktionale Tests wie Performanztests und Lebensdauertests)

• Testumgebungen (z. B. Hardware-in-the-Loop und Fahrzeuge)

• Statische Testverfahren (z. B. Reviews und statische Analyse)

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 28 von 73 23.11.2025
© International Software Testing Qualifications Board

Die Methodentabellen definieren die von der Norm empfohlenen Methoden für jeden ASIL.

Die Tabellen sind stets nach dem gleichen Schema aufgebaut:

 ASIL A ASIL B ASIL C ASIL D

1 Methode x o + ++ ++
2 Methode y o o + +

3a Methode z1 + ++ ++ ++

3b Methode z2 ++ + o o

Tabelle 1: Beispiel für eine Methodentabelle
Für jede Methode ist in Abhängigkeit zum ASIL dokumentiert, ob ihre Verwendung empfohlen (+)
oder sogar dringend empfohlen (++) wird. Für Methoden, die mit “keine Empfehlung” (o)
gekennzeichnet sind, gibt es in der Norm keine Empfehlung für oder gegen ihre Verwendung.

Die ISO 26262 führt in den Methodentabellen auch gleichwertige alternative Methoden mit
Buchstabensuffixen auf (im obigen Beispiel die Zeilen 3a und 3b). Hier müssen die Tester eine
geeignete Kombination wählen, um die relevanten Anforderungen ASIL-konform überprüfen zu
können. Die Tester müssen die Zweckmäßigkeit der gewählten Kombination begründen.

Bei alternativlosen Methoden (z. B. Zeile 1 und 2) entfällt diese Wahlmöglichkeit. Hier müssen die
Tester alle Methoden anwenden, die für den jeweiligen ASIL dringend empfohlen werden.

Bei der Überprüfung einer Anforderung nach ASIL C ergeben sich z. B. aus Tabelle 1 die
folgenden Methoden:

• Methode x: dringend empfohlen. Sie ist also bei der Entwicklung nach ISO 26262
anzuwenden.

• Methode y: empfohlen. Sie sollte angewendet werden oder es muss eine Begründung
gegeben werden, wenn die Methode nicht verwendet wird.

• Methoden z1 und z2: Hier ist mindestens die Methode z1 zu wählen, da sie für ASIL C die
höhere Empfehlung aufweist.

ISO 26262 erlaubt den Testern auch, andere als die in den Methodentabellen aufgeführten
Methoden zu verwenden. In diesem Fall muss die gewählte Methode hinsichtlich ihrer Tauglichkeit
und Angemessenheit begründet werden.

Generell erlaubt die ISO 26262 die Anpassung der Sicherheitsaktivitäten an die spezifischen
Bedürfnisse eines bestimmten Projekts ("Tailoring"). Für testbezogene Aktivitäten bedeutet dies,
dass die Teststrategie und der Testansatz auf das jeweilige Projekt zugeschnitten werden können.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 29 von 73 23.11.2025
© International Software Testing Qualifications Board

2.3 AUTOSAR
AUTOSAR steht für "AUTomotive Open System Architecture". AUTOSAR ist sowohl die
Architektur als auch die dahinterstehende Entwicklungspartnerschaft. Die AUTOSAR-Partnerschaft
wurde 2003 gegründet und umfasst hauptsächlich OEMs und Zulieferer aus der
Automobilindustrie. Ziel der Partnerschaft ist die gemeinsame Entwicklung und Etablierung eines
offenen Industriestandards für die Softwarearchitektur im Automobilbereich. Heute ist AUTOSAR
ein weltweit etablierter Standard für automobile E/E-Systeme. Daher wird der Tester mit Sicherheit
auf AUTOSAR-Arbeitsprodukte stoßen. Für den Tester ist es wichtig, die Projektziele von
AUTOSAR, die allgemeine Struktur der AUTOSAR-Architektur und deren Einfluss auf die Arbeit
des Testers zu kennen.

2.3.1 Projektziele von AUTOSAR
Im Folgenden sind die Projektziele von AUTOSAR aufgeführt:

• Unterstützung der Übertragbarkeit von Software

• Unterstützung der Skalierbarkeit über verschiedene Architekturen und Hardwarevarianten
hinweg

• Unterstützung verschiedener funktionaler Domänen

• Unterstützung des Datenaustauschs mit Nicht-AUTOSAR-Systemen

• Definition einer offenen Architektur für Automobilsoftware

• Unterstützung der Entwicklung von zuverlässigen Systemen, die sich durch Verfügbarkeit,
Zuverlässigkeit, Sicherheit, Integrität, Gebrauchstauglichkeit und Wartbarkeit auszeichnen

• Unterstützung der Zusammenarbeit zwischen Partnern

• Unterstützung anwendbarer internationaler Automobilstandards und modernster
Technologien

2.3.2 Allgemeine Struktur von AUTOSAR [informativ]
In AUTOSAR gibt es zwei Architekturvarianten: Classic und Adaptive. Der Einfachheit halber
konzentriert sich dieser Lehrplan auf AUTOSAR Classic. Ein AUTOSAR-System besteht
typischerweise aus mehreren elektronischen Steuergeräten (ECUs). Auf jedem Steuergerät
besteht die Softwarearchitektur von AUTOSAR Classic aus drei Schichten:

• Die oberste Anwendungsschicht ist hardwareunabhängig. Eine Komponente dieser
Schicht wird als AUTOSAR-Softwarekomponente (Software Component, SW-C)
bezeichnet.

• Die untere hardwareorientierte Schicht ist die standardisierte Basissoftware (Basic
Software, BSW).

• Die dazwischen liegende Abstraktionsschicht ist die AUTOSAR-Laufzeitumgebung
(Runtime Environment, RTE). Als eine Art Middleware implementiert sie den Datenfluss
zwischen SW-Cs sowie zwischen SW-Cs und BSW.

In der AUTOSAR-Methodik zur Entwicklung automobiler Systeme tauschen OEMs und Zulieferer
Systeminformationen über Beschreibungsdateien auf Basis von AUTOSAR-Templates
(sogenannte "arxml-Dateien") aus:

• Die "ECU-Konfigurationsbeschreibung" enthält Daten für die Integration der SW-Cs auf
einem einzelnen Steuergerät.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 30 von 73 23.11.2025
© International Software Testing Qualifications Board

• Die "Systemkonfigurationsbeschreibung" enthält Daten für die Integration aller
Steuergeräte eines Fahrzeugs.

• Der "ECU-Auszug" enthält die Daten aus der "Systemkonfigurationsbeschreibung" für ein
einzelnes Steuergerät.

2.3.3 Einfluss von AUTOSAR auf die Arbeit des Testers
AUTOSAR beeinflusst die Arbeit des Testers, insbesondere auf den folgenden Teststufen11:

• Softwarekomponententest und Softwareintegrationstest in einer virtuellen Umgebung (z. B.
Software-in-the-Loop): Mit Hilfe einer Simulation der BSW und der RTE kann der Tester eine
SW-C frühzeitig testen.

• Softwarekomponententest und Softwareintegrationstest im realen Steuergerät: Hier erhält
der Tester Zugriff auf die Kommunikation in der RTE. So kann der Tester das Verhalten
einer SW-C zur Laufzeit beobachten und steuern.

• Der AUTOSAR-Akzeptanztest ist ein Test des Softwaresystems, der die Konformität der
AUTOSAR-Funktionalität auf der Kommunikations- und Anwendungsebene sicherstellt.
Die Durchführung des AUTOSAR-Akzeptanztests ist optional.

• Systemintegrationstest: Integration verschiedener Steuergeräte, z. B., um Funktionalität zu
testen, deren Implementierung auf verschiedene Steuergeräte verteilt ist. Durch die
Simulation von noch nicht implementierter Funktionalität kann der Tester das
Systemverhalten frühzeitig beurteilen.

2.4 Vergleich von ASPICE, ISO 26262 und CTFL®

2.4.1 Zielsetzung von ASPICE und ISO 26262
Es gibt mehrere Normen, die Anforderungen für die Produktentwicklung vorschlagen. In der Regel
beleuchten diese unterschiedliche Aspekte bei der Entwicklung. In diesem Unterabschnitt werden
ISO 26262 und ASPICE hinsichtlich ihrer Ziele verglichen.

ISO 26262 hat das Ziel, Risiken durch Fehlerwirkungen sowohl bei Hardware als auch bei
Software zu vermeiden, indem geeignete Anforderungen und Prozesse bereitgestellt werden. Für
die Entwicklung von E/E-Systemen definiert sie die Anforderungen an die Testprozesse
und -methoden12, die vom Tester anzuwenden sind. Diese sind abhängig vom ASIL des Items.

ASPICE dient dazu, die Fähigkeit des Produktentwicklungsprozesses im Rahmen von
Assessments zu ermitteln. Dazu definiert ASPICE bewertbare Kriterien für diese Prozesse. Diese
sind im Gegensatz zur ISO 26262 unabhängig vom ASIL des Produkts.

2.4.2 Vergleich der Teststufen zwischen ASPICE, ISO 26262 und CTFL®
Sowohl ISO 26262 als auch ASPICE beschreiben Teststufen. Diese stimmen jedoch nicht
vollständig mit den Teststufen des CTFL® überein. Für eine effiziente und effektive
Zusammenarbeit innerhalb des Entwicklungsteams sollten die Tester daher ein gemeinsames
Verständnis aller Teststufen haben.

Der in ASPICE verwendete Begriff "System" sowie die in der ISO 26262 verwendeten Begriffe
"System" und "Item" beziehen sich auf ein Produkt, das aus Hardware- und Softwarekomponenten

11 Für eine Übersicht der Teststufen siehe Abschnitt 2.4.2.
12 Zu den Methoden der ISO 26262 siehe Abschnitt 2.2.5.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 31 von 73 23.11.2025
© International Software Testing Qualifications Board

besteht. Der CTFL®-Lehrplan [ISTQB_CTFL] bezieht sich jedoch nur auf Software, wenn er den
Begriff "System" verwendet. Daher können die Teststufen des ISTQB® wie folgt auf die Teststufen
in ISO 26262 und ASPICE abgebildet werden. Die in Klammern angegebenen Zahlen in der Spalte
ISO 26262 beziehen sich auf einen bestimmten Teil der Norm ISO 26262 und auf ein bestimmtes
Kapitel darin. In der ASPICE-Spalte steht in der Klammer die jeweilige Prozess-ID.

ISTQB® CTFL ISO 26262:2018 ASPICE 4.0

Abnahmetests Sicherheitsvalidierung (4-
8)13

Validierung (VAL.1)14

Testen von Systemen von
Systemen15 System- und Item-

Integration und Test
(4-7)16

Systemverifizierung (SYS.5)

Systemintegrationstests Systemintegration und
Integrationsverifizierung (SYS.4)

Systemtest Testen der eingebetteten
Software
(6-11)17

Softwareverifizierung (SWE.6)

Komponentenintegrationstest18 Softwareintegration und
-verifizierung (6-10)

Softwarekomponentenverifizierung
und Integrationsverifizierung
(SWE.5)

Komponententest19 Software-Unit-Verifizierung
(6-9)

Software-Unit-Verifizierung
(SWE.4)

Tabelle 2: Zuordnung der Teststufen
Die meisten Testverfahren aus dem CTFL®-Lehrplan [ISTQB_CTFL] können auf verschiedenen
Teststufen eingesetzt werden. In ähnlicher Weise ordnet ASPICE Testverfahren nicht generell
Teststufen zu. Daher überlassen beide die Wahl den Testern. In der ISO 26262 gibt es für jede
Teststufe einzelne Methodentabellen (siehe Abschnitte 2.2.4 und 2.2.5). Diese geben dem Tester
Empfehlungen für Testverfahren auf der Grundlage der ASIL-Stufe.

13 Die Sicherheitsvalidierung umfasst nur Teile eines Abnahmetests nach ISTQB.
14 Die Validierung (VAL.1) deckt nur Teile eines Abnahmetests nach ISTQB ab.
15 Das Testen von mehreren heterogenen verteilten Systemen. Im CTFL korrespondieren die Prozesse von ASPICE
(SYS.5) und ISO 26262 (4-7) mit dem Systemtest (im Sinne von integrierten Systemen)
16 Die Integration und der Test eines Items umfasst drei Phasen: Hardware-Software-Integration und -Test eines Elements,
Integration und Test aller Elemente, die zu diesem Item gehören, sowie die Integration und der Test des Items in
Verbindung mit anderen Items im Fahrzeug.
17 Test der Anforderungen an die Software für funktionale Sicherheit, ausgeführt auf der Zielhardware.
18 Die Prozesse von ASPICE (SWE.5) und ISO 26262 (6-10) decken zusätzlich den Komponententest (im Sinne von
„component“) im CTFL ab.
19 Die Prozesse von ASPICE (SWE.4) und ISO 26262 (6-9) decken den Komponententest (im Sinne von „unit“) im CTFL ab

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 32 von 73 23.11.2025
© International Software Testing Qualifications Board

3 Testen in einer virtuellen Umgebung – 160 Minuten
Schlüsselbegriffe
Umgebungsmodell, Hardware-in-the-Loop, Model-in-the-Loop, Software-in-the-Loop

Domänenspezifische Schlüsselbegriffe
Closed-Loop-System, Open-Loop-System

Lernziele für Kapitel 3 Der Lernende kann ...
3.1 Testumgebung im Allgemeinen
AuT-3.1.1 (K1) … sich an die Motivation für eine Testumgebung in der Automobilentwicklung

erinnern

AuT-3.1.2 (K1) … die allgemeinen Bestandteile einer automobilspezifischen Testumgebung
wiedergeben

AuT-3.1.3 (K2) … die Unterschiede zwischen Closed-Loop-Systemen und Open-Loop-
Systemen erläutern

AuT-3.1.4 (K1) … die wesentlichen Funktionen, Datenbasen und Protokolle eines
Steuergeräts wiedergeben

3.2 Testen in XiL-Testumgebungen
AuT-3.2.1.1 (K1) … den Aufbau einer MiL-Testumgebung wiedergeben

AuT-3.2.1.2 (K2) … die Einsatzgebiete und Randbedingungen einer MiL-Testumgebung
erläutern

AuT-3.2.2.1 (K1) … den Aufbau einer SiL-Testumgebung wiedergeben

AuT-3.2.2.2 (K1) … die Einsatzgebiete und die Randbedingungen einer SiL-Testumgebung
nennen

AuT-3.2.3.1 (K1) … den Aufbau einer HiL-Testumgebung wiedergeben

AuT-3.2.3.2 (K2) … die Einsatzgebiete und die Randbedingungen einer HiL-Testumgebung
erläutern

AuT-3.2.4.1 (K2) … die Vor- und Nachteile des Testens anhand von Kriterien für XiL-
Testumgebungen zusammenfassen

AuT-3.2.4.2 (K3) … Kriterien für die Zuordnung eines bestimmten Umfangs des Tests zu einer
oder mehreren Testumgebungen anwenden

AuT-3.2.4.3 (K1) … die XiL-Testumgebungen im V-Modell skizzieren

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 33 von 73 23.11.2025
© International Software Testing Qualifications Board

3.1 Testumgebung im Allgemeinen

3.1.1 Motivation für eine Testumgebung in der Entwicklung im Automobilbereich
Der Tester steht vor besonderen Herausforderungen. Einerseits wird vom Tester erwartet, dass er
so früh wie möglich mit dem Testen beginnt, um Fehlerzustände frühzeitig im Entwicklungsprozess
zu finden. Andererseits benötigt der Tester eine realistische Umgebung, um das System zu testen
und die Fehlerzustände zu finden, die im fertigen Produkt auftreten würden. Der Tester kann
diesen Konflikt lösen, indem er geeignete Testumgebungen verwendet, die zu den verschiedenen
Entwicklungsphasen passen. Auf diese Weise kann der Tester einzelne Testaufgaben
implementieren und ausführen, bevor das fertig produzierte oder entwickelte Steuergerät zur
Verfügung steht. Durch den Einsatz verschiedener Testumgebungen kann der Tester Situationen
simulieren, die im realen Fahrzeug nur schwer reproduzierbar sind, wie z. B. Kurzschlüsse und
Unterbrechungen in Kabelbäumen oder Überlastungen der Netzwerkkommunikation.

3.1.2 Allgemeine Teile einer Testumgebung
Damit der Tester die Tests durchführen kann, benötigt er eine Testumgebung, in der die fehlenden
Teile simuliert werden. Diese Umgebung hilft dem Tester, die Eingaben des Testobjekts zu steuern
und die Ausgänge zu beobachten, auch "Point of Control" (PoC) und "Point of Observation" (PoO)
genannt. Nach ISO/IEC/IEEE 29119-1 besteht eine Testumgebung aus den folgenden Teilen:

• Hardware der Testumgebung (z. B. ein Steuerrechner, ggf. ein echtzeitfähiger Rechner,
ein Prüfstand und ein Entwicklungskit)

• Software der Testumgebung (z. B. Betriebssystem, Simulationssoftware und
Umgebungsmodelle)

• Kommunikationsmöglichkeiten (z. B. Netzwerkzugang und Datenlogger)

• Werkzeuge (z. B. Oszilloskop und Messgeräte)

• Labor (z. B. Schutz vor elektromagnetischer Strahlung und Lärm)

Ein wichtiger Bestandteil der Testumgebung ist das Umgebungsmodell. Modelle sind
Schlüsselelemente der virtuellen Testumgebung. Sie repräsentieren Aspekte der realen Welt wie
den Verbrennungsmotor, Getriebe, Fahrzeugsensoren und Steuergeräte oder auch den Fahrer
und die Straßenbedingungen. Die Testumgebung bietet auch verschiedene Zugangspunkte. Diese
erlauben es dem Tester, das Testobjekt zu beobachten, zu messen und es bei Bedarf zu
beeinflussen oder zu steuern.

3.1.3 Unterschiede zwischen Closed-Loop- und Open-Loop-Systemen
Die Testumgebung dient dazu, die Eingangsschnittstellen des zu testenden Geräts zu steuern
(PoC) und seine Ausgabe über die Ausgangsschnittstellen zu überwachen (PoO). Anschließend
wird das Verhalten an den Ausgangsschnittstellen analysiert. Ein erfolgreiches Testergebnis ist
gegeben, wenn die beobachteten Ausgaben mit den erwarteten Ergebnissen übereinstimmen.

Im Allgemeinen gibt es zwei Arten von Regelsystemen: Closed-Loop-Systeme und Open-Loop-
Systeme. Der Unterschied liegt in der Art und Weise, wie das Steuergerät auf seine Umgebung
reagiert. Dies führt zu unterschiedlichen Anforderungen an die virtuelle Testumgebung.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 34 von 73 23.11.2025
© International Software Testing Qualifications Board

3.1.3.1 Closed-Loop-System

Die Stimulation in einem Closed-Loop-System, auch In-the-Loop genannt, berücksichtigt die
Ausgaben des Testobjekts. Dies geschieht über ein Umgebungsmodell, das die Ausgaben
sammelt und sie direkt oder indirekt an den Eingang des Testobjekts weiterleitet. Es entsteht ein
Regelkreis in der Testumgebung.

Closed-Loop-Systeme werden häufig zum Testen von Reglern eingesetzt. Damit lassen sich
komplexe Funktionen wie Motor- und Getriebesteuerungen und Fahrerassistenzsysteme wie das
Antiblockiersystem (ABS®) oder die Fahrdynamikregelung (Vehicle Dynamic Control, VDC®)
testen.

3.1.3.2 Open-Loop-System

Bei einem Open-Loop-System stehen die Ausgänge des Systems in keinem Zusammenhang mit
den Eingängen. Das System verfügt über keine Rückkopplungsschleife. In diesem Fall werden die
Eingänge des Testobjekts direkt vom Tester im Testablauf definiert.

Der Anwendungsfall für Open-Loop-Systeme und Closed-Loop-Systeme hängt stark vom
Verhalten des Testobjekts ab. Closed-Loop-Systeme haben Ausgänge, die die Eingänge
beeinflussen und so eine Rückkopplung erzeugen, während Open-Loop-Systeme diesen
Rückkopplungsmechanismus nicht besitzen. Wenn das Testobjekt ein reaktives Verhalten aufweist
oder einen Zustandsautomaten widerspiegelt, wird ein Open-Loop-System bevorzugt. In der
Innenraum- und Fahrwerkselektronik gibt es viele Beispiele für Open-Loop-Systeme (z. B.
Leuchten und Schalter).

3.1.4 Datenbasen und Kommunikationsprotokolle eines Steuergeräts
Ein Steuergerät in der Automobilumgebung funktioniert als eingebettetes System, das aus
Hardware und Software besteht. Das Steuergerät empfängt verschiedene analoge und digitale
Eingaben, die ständig Umgebungsdaten in Form von Spannung, Stromstärke und Temperatur
erfassen. Bussysteme dienen der Kommunikation und stellen dem Steuergerät weitere
Informationen zur Verfügung, die von Sensoren oder anderen Steuergeräten stammen. Diese
Informationen werden vom Steuergerät entweder selbst empfangen und verarbeitet oder generiert
und versendet. Das Testobjekt verwaltet die Daten im Speicher, um die ausgegebenen Aktionen,
Informationen oder Daten zu verarbeiten. Die erzeugten Ausgaben werden auch über analoge und
digitale Ausgangspins, Bussysteme oder Diagnoseschnittstellen ausgeführt.

Die Datenbasen dienen als beschreibende Referenz und definieren die Eingangs- und
Ausgangssignale des Steuergeräts. Zu diesen Daten gehören auch Beschreibungen, Einheiten
und Umrechnungsformeln der Signale.

Die Kommunikationsprotokolle beschreiben den Datenaustausch über die entsprechenden
physikalischen Schnittstellen. Diese Protokolle legen fest, welche Spannung oder Bitfolge welchen
Wert des Signals repräsentiert.

Die Auswahl der Datenbasen und Kommunikationsprotokolle hängt von der Funktion des
Steuergeräts ab. Für den Zugriff auf Diagnosefunktionen im Steuergerät benötigt der Tester
beispielsweise Informationen über die verwendete Datenbasis (z. B. Application Programming
Interface Specification (ASAM20 MCD-3 D) und serviceorientierte Fahrzeugdiagnose (ASAM
SOVD) sowie das Kommunikationsprotokoll (z. B. Unified Diagnostic Services nach ISO 14229
und AUTOSAR- Spezifikation (SOME/IP)). Weitere automobilspezifische Datenbasen sind in den
ASAM- und AUTOSAR-Standards definiert.

20 Association for Standardization of Automation and Measuring Systems

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 35 von 73 23.11.2025
© International Software Testing Qualifications Board

3.2 Testen in XiL-Testumgebungen
In der Automobilindustrie werden die folgenden Arten von XiL-Testumgebungen21 verwendet:

• Model-in-the-Loop (MiL)

• Software-in-the-Loop (SiL)

• Processor-in-the-Loop22 (PiL)

• Hardware-in-the-Loop (HiL)

• Vehicle-in-the-Loop23 (ViL)

Der Tester sollte sich mit den Testumgebungen (d. h. MiL, SiL und HiL) vertraut machen und sie
verstehen. In den folgenden Abschnitten werden der Aufbau und die Anwendungsbereiche der
verschiedenen Testumgebungen näher erläutert.

3.2.1 Model-in-the-Loop (MiL)
3.2.1.1 Aufbau einer MiL-Testumgebung

In einer MiL-Testumgebung ist das Testobjekt als Modell verfügbar. Dieses Modell ist ausführbar,
aber nicht für spezielle Hardware kompiliert. Die Entwickler erstellen die Modelle mit speziellen
Modellierungswerkzeugen. Der Tester benötigt eine Testumgebung, um diese Modelle ausführen
und testen zu können. Diese wird in der Regel in der gleichen Entwicklungsumgebung
implementiert wie das Testobjekt selbst. Diese Testumgebung kann zusätzlich ein
Umgebungsmodell enthalten. Der Tester kann das Testobjekt über Zugangspunkte steuern und
beobachten. Die Zugangspunkte können sowohl im Modell des Testobjekts als auch im
Umgebungsmodell beliebig platziert werden. Das Modell des Testobjekts ist mit dem
Umgebungsmodell verbunden und lässt sich leicht als Closed-Loop-System implementieren und
nutzen.

3.2.1.2 Anwendungsbereiche und Randbedingungen einer MiL-Testumgebung

Mit einer MiL-Testumgebung kann der Tester den funktionalen Systementwurf testen. Während
der Entwicklung (z. B. dem allgemeinen V-Modell folgend) kann der Tester auch einzelne
Komponenten bis hin zu einem gesamten System testen. Zur Durchführung des Tests benötigt der
Tester einen Computer und die entsprechende Simulationssoftware einschließlich des
Umgebungsmodells. Das Umgebungsmodell wird mit zunehmendem Funktionsumfang des
Testobjekts immer komplexer. Die Abbildung der Realität und der Umweltfaktoren ist sehr
komplex. Auch die Ausführungszeiten für die Modelle steigen überproportional an. Daher lohnt sich
der Aufwand für die Implementierung einer MiL-Testumgebung ab einer bestimmten Phase der
Entwicklung nicht mehr.24

21 Der Buchstabe X in XiL ist ein Platzhalter für die spezifischen Testumgebungen in der angegebenen Liste.
22 Diese Testumgebung wird in diesem Lehrplan nicht berücksichtigt und ist rein informativ.
23 Diese Testumgebung wird in diesem Lehrplan nicht berücksichtigt und ist rein informativ.
24 Dies gilt auch für alle anderen XiL-Testumgebungen.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 36 von 73 23.11.2025
© International Software Testing Qualifications Board

Durch den Einsatz einer MiL-Testumgebung kann der Tester bereits in einer frühen Phase der
Entwicklung die funktionale Eignung von Modellen über alle Entwicklungsstufen hinweg testen
(d. h. die linke Seite des V-Modells. Es ist aber nicht üblich, das Umgebungsmodell in die Lage zu
versetzen, Bus- oder Diagnosefunktionen oder physikalisches Verhalten wie Kabelbrüche oder
Kurzschlüsse zu simulieren. Diese Aufgaben können mit anderen Testumgebungen einfacher und
kostengünstiger durchgeführt werden.

In einer MiL-Testumgebung findet die Testdurchführung nicht in Echtzeit statt. Da alle
Komponenten als Modell zur Verfügung stehen, läuft die Testdurchführung in Simulationszeit ab.
Je komplexer ein System ist, desto mehr Ausführungszeit bzw. Leistung benötigt der Computer,
um alle notwendigen Informationen bereitzustellen. Die Dauer der Simulation ist bei kleineren
Systemen kürzer als die Ausführung in Echtzeit. Ein großer Vorteil ist, dass der Tester die
Simulation jederzeit für eine detaillierte Analyse und Bewertung pausieren kann.

3.2.2 Software-in-the-Loop (SiL)
3.2.2.1 Aufbau einer SiL-Testumgebung

Das Testobjekt wird für eine bestimmte SiL-Testumgebung kompiliert. Das bedeutet, dass der
Quellcode für eine bestimmte Rechnerarchitektur kompiliert wurde. Dieser Maschinencode ist für
die Testumgebung lesbar, da er aus binären Datensätzen besteht. Damit die Testumgebung auf
die Signale zugreifen kann, ist ein WrapperEin Wrapper ist eine zusätzliche Software, die den
Zugang zu Eingängen und Ausgängen erlaubt, die möglicherweise nicht zugänglich sind, wenn
das Testobjekt direkt und nicht über den Wrapper mit der Umgebung kommuniziert. So kann der
Tester Softwaresignale steuern und beobachten. Der Wrapper definiert die Zugangspunkte zum
Testobjekt, übernimmt aber nicht dessen funktionale Aufgaben.

Für die Simulation wird ein Umgebungsmodell benötigt. Mit Hilfe des Wrappers wird das Testobjekt
mit der Testumgebung verbunden. Die Testdurchführung erfolgt auf einem Computer ohne
spezielle Hardware. Der Tester benötigt ein Software-Tool, das einen Wrapper für das Testobjekt
mit Zugängen zur Testumgebung erstellen kann.

3.2.2.2 Anwendungsbereiche und Randbedingungen einer SiL-Testumgebung

Wenn der Entwickler Quellcode auf der Grundlage eines Modells generiert, kann sich das
tatsächliche Verhalten der Software von dem erwarteten Verhalten unterscheiden. Dies kann durch
unterschiedliche Datentypen im Modell, meist Gleitkomma, und im kompilierten Softwarecode,
meist Festkomma, aber auch durch unterschiedliche Speicherbereiche verursacht werden. Diese
Anomalien im erwarteten Verhalten können zum ersten Mal in einer SiL-Testumgebung getestet
werden. Der Tester kann einen Testansatz wie Back-to-Back-Tests (siehe Abschnitt 4.2.2)
verwenden, um das Verhalten zu vergleichen.

Der Tester führt die Tests, analog zur MiL-Testumgebung, in Simulationszeit aus. Je nach
Berechnungsverfahren und Komplexität des Umgebungsmodells kann diese Simulationszeit kürzer
oder länger als in Echtzeit sein. Der Tester kann die Testdurchführung jederzeit für eine detaillierte
Analyse und Bewertung anhalten. Funktionale Tests, Schnittstellentests und Regressionstests sind
sehr häufige Testarten, die in einer SiL-Testumgebung durchgeführt werden. Performanz-,
Effizienz- und Zuverlässigkeitstests sind dagegen in SiL-Testumgebungen eher unüblich. Diese
Qualitätsmerkmale werden meist von der Zielhardware beeinflusst.

3.2.3 Hardware-in-the-Loop (HiL)
3.2.3.1 Aufbau einer HiL-Testumgebung

Steht das Testobjekt als Prototyp zur Verfügung oder ist es bereits fertig entwickelt, kann der
Tester eine HiL-Testumgebung zur Durchführung von Tests nutzen. Die typischen Bestandteile
einer HiL-Testumgebung sind:

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 37 von 73 23.11.2025
© International Software Testing Qualifications Board

• Ein Netzteil zum Einstellen verschiedener Versorgungsspannungen

• Ein echtzeitfähiger Computer, auf dem das Umgebungsmodell ablaufen soll

• Mehrere reale Teile, die nicht im Umgebungsmodell implementiert sind

• Eine Signalverarbeitungseinheit für Signalart und Signalamplitude

• Eine Fault Insertion Unit (FIU) (siehe Abschnitt 4.2.3) für die Simulation von Kabelbrüchen
und Kurzschlüssen

• Eine Breakout-Box als zusätzliche Zugangsschnittstelle im Kabelbaum

• Eine Restbussimulation der nicht vorhandenen Busteilnehmer

3.2.3.2 Einsatzgebiete und Randbedingungen einer HiL-Testumgebung

Die Zugangspunkte in einer HiL-Testumgebung sind vielfältig. Der Tester muss sich darüber im
Klaren sein, dass die Verwendung der falschen Zugangspunkte zum Testobjekt die
Testergebnisse unbrauchbar machen kann. Die Kenntnis der verschiedenen Zugangspunkte und
ihrer Verbindungsfähigkeiten in der HiL-Testumgebung ermöglicht es, effektive Tests zu
implementieren, durchzuführen und auszuwerten.

Die HiL-Testumgebung ist aufgrund ihrer Vielschichtigkeit komplexer als die zuvor genannten
Testumgebungen (d. h. MiL und SiL). Der Tester muss diese Komplexität beherrschen, um
Testaufgaben zu bewältigen. Die HiL-Testumgebung kann für Komponententests, Integrationstests
und Systemtests eingesetzt werden. Ziel ist es unter anderem, funktionale und nicht-funktionale
Fehlerzustände in der Soft- und Hardware zu finden.

Mit Hilfe von HiL-Testumgebungen können verschiedene Teststufen analysiert werden. Handelt es
sich bei dem Testobjekt um ein einzelnes Steuergerät, so spricht man von einem Komponenten-
HiL25. Handelt es sich bei dem Testobjekt um eine Kombination aus mehreren Steuergeräten,
spricht man von einem System-HiL. Mit dem Komponenten-HiL testet der Tester Funktionen des
Steuergeräts. Beim System-HiL steht das Testen des Datenaustauschs zwischen den
Steuergeräten und der Systemtest im Vordergrund.

Im Gegensatz zu den zuvor genannten Testumgebungen (z. B. MiL und SiL) läuft die
Simulationszeit in einer HiL-Testumgebung immer in Echtzeit ab. Der Grund dafür ist, dass die
Software auf realer Hardware läuft. Ein Pausieren oder Anhalten ist in dieser Testumgebung nicht
mehr möglich. Zur Testumgebung gehört daher ein echtzeitfähiger Rechner, der alle relevanten
Signale innerhalb einer vorgegebenen Zeitspanne erfassen und ausgeben kann.

3.2.4 Vergleich der XiL-Testumgebungen
3.2.4.1 Vor- und Nachteile des Testens in den XiL-Testumgebungen

Der Tester versteht die Eigenschaften der verschiedenen Testumgebungen. Auf diese Weise kann
der Tester die Vor- und Nachteile des Testens in den einzelnen Testumgebungen verstehen und
beurteilen. Die Kriterien sind in Tabelle 3 aufgeführt.

Kriterien XiL-Testumgebung Auswirkung MiL SiL HiL
Realitätsnähe Die Realität wird simuliert, viele

Merkmale werden abstrahiert, der
Schwerpunkt liegt auf den Strukturen
und der Logik.

Geringe + o o

25 Der Begriff Komponente wird in diesem Fall für ein Steuergerät im Kontext eines E/E-Systems verwendet.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 38 von 73 23.11.2025
© International Software Testing Qualifications Board

Kriterien XiL-Testumgebung Auswirkung MiL SiL HiL
Kompilierte reale Software kann ohne
spezielle Hardware ausgeführt werden.

Niedrig bis
mittel

o + o

Integriertes System, ausführbar Hoch o o +
Zeit und Aufwand für
Debugging

Fehlerzustände werden im Modell des
Testobjekts gefunden
(Modellanpassung).

Niedrig + o o

Fehlerzustände werden in der
programmierten Software gefunden
(Softwareanpassung).

Mittel o + o

Fehlerzustände werden auf der
Systemebene gefunden
(Systemanpassung).

Hoch o o +

Aufwand für
Implementierung und
Wartung

Erstellen eines Umgebungsmodells Gering + o o
Umgebungsmodell und Wrapper
erstellen

Mittel o + o

Erstellen des Umgebungsmodells und
Verdrahten der Hardwarekomponenten

Hoch o o +

Aufwand für die
Vorbereitung des
Tests

Die Umgebung kann schnell eingerichtet
werden.

Niedrig + o o

Die Umgebung kann schnell eingerichtet
werden.

Mittel o + o

Entwurf, Umsetzung und Auswertung
der Tests erfordern einen hohen
Aufwand.

Hoch o o +

Erforderlicher
Reifegrad des
Testobjekts

Systemmodelle werden simuliert. Niedrig + o o
Erste Funktionen werden mit der
Zielsoftware getestet.

Mittel o + o

Ein oder mehrere lauffähige
Steuergeräte oder Teilsysteme werden
möglichst vollständig getestet.

Hoch o o +

Erforderlicher
Detaillierungsgrad der
Testbasis
(Spezifikation)

Es werden Modelle getestet, die
teilweise eine unvollständige
Spezifikation abdecken.

Mittel + o o

Die relevanten Informationen auf der
Softwareebene müssen verfügbar sein
(z. B. detaillierte Spezifikation der
Komponenten).

Mittel bis
hoch

o + o

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 39 von 73 23.11.2025
© International Software Testing Qualifications Board

Kriterien XiL-Testumgebung Auswirkung MiL SiL HiL
Anforderungen können auf der
Systemebene mit einer vollständigen
Systemspezifikation getestet werden.

Hoch o o +

Zugänglichkeit zum
Testobjekt

Alle Signale in einem Modell können
beobachtet und gesteuert werden.

Hoch + o o

Nur die im Wrapper verfügbaren Signale
können beobachtet und gesteuert
werden.

Mittel o + o

Es können nur die in der Hardware oder
den Kommunikationsprotokollen
verfügbaren Signale beobachtet und
gesteuert werden.

Niedrig o o +

Tabelle 3: Kriterien und ihre Auswirkungen auf MiL-, SiL- und HiL-Testumgebungen

3.2.4.2 Anwendung von Kriterien für die Zuordnung eines bestimmten Testumfangs zu einer
oder mehreren Testumgebungen

In der folgenden Tabelle werden die Testziele detailliert beschrieben und den geeigneten
Testumgebungen zugeordnet.

Testziel Beschreibung anhand von Beispielen MiL SiL HiL

Test der
Kundenanforderungen

Korrekte Bereitstellung der geforderten Funktionalität.
Dazu gehören die korrekte Verarbeitung von Eingaben,
die korrekte Reaktion auf Eingaben und die korrekte
Datenausgabe am Ausgang.

o o +

Testmechanismen zur
Erkennung und
Behandlung von
Fehlerzuständen

• Erkennung und Behandlung von zufälligen
Fehlerzuständen der Hardware

• Erkennung und Behandlung von
Fehlerzuständen der Software

• Überführung in einen sicheren Zustand nach
Erkennung von Fehlerzuständen, z. B.
 Deaktivierung eines Systems

+ + +

Test der Reaktion auf
Konfigurationsdaten

Überprüfung des Einflusses von Konfigurationsdaten
auf das Verhalten des Testobjekts

o + +

Testen von
Diagnosefunktionen

Korrekte Bereitstellung der erforderlichen
Diagnosefunktionalität, wie Fehlererkennung,
Fehleraktivierung und Rücksetzanforderung sowie
Fehleraktivierung im Fehlerspeicher (z. B. On-Board-
Diagnose oder in der Werkstatt)

- + +

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 40 von 73 23.11.2025
© International Software Testing Qualifications Board

Testziel Beschreibung anhand von Beispielen MiL SiL HiL

Testen des
Zusammenspiels an
Schnittstellen

Überprüfung der internen und externen Schnittstellen
des Testobjekts

o + +

Gebrauchstauglichkeit
nachweisen

Das Testobjekt sollte die
Gebrauchstauglichkeitsanforderungen des Benutzers
erfüllen.

- o +

Schlüssel: + empfohlen, o möglich, - nicht sinnvoll

Tabelle 4: Vergleich der Testarten in MiL-, SiL- und HiL-Testumgebungen
Tabelle 4 zeigt, dass Testumgebungen für bestimmte Testziele geeignet sind. Dieser diversifizierte
Ansatz wird insbesondere beim Testen der Mechanismen zur Fehlererkennung und -behandlung
deutlich. Gemäß Shift-Left lautet die allgemeine Schlussfolgerung, dass grundlegende
Anforderungs- und Fehlerzustände bereits durch das Testen frühzeitig erkannt werden. Daher wird
MiL für die Erkennung von allgemeinen Designfehlern, SiL hauptsächlich für technische
Softwarefehler und HiL für technische Hardware-/Softwarefehler verwendet. Weiterhin ist zu
beachten, dass bei allen Testarten neben dem Nachweis von Zuverlässigkeit, Performanz-
Effizienz und Gebrauchstauglichkeit die funktionale Eignung des Testobjekts im Vordergrund steht.

In der Teststrategie ordnet der Testmanager den Testumfang mehreren unterschiedlichen
Testumgebungen zu. Die Tester sollten sich regelmäßig abstimmen, um effizientes und genaues
Testen über verschiedene Testumgebungen hinweg zu gewährleisten. Gegebenenfalls empfiehlt
es sich, die Testziele abzustimmen, Doppelarbeit zu vermeiden und sicherzustellen, dass jeder
Test in der für seine Entwicklungsphase am besten geeigneten Testumgebung durchgeführt wird.
Diese Zusammenarbeit trägt dazu bei, Ressourcenkonflikte zu vermeiden, eine konsistente
Überdeckung zu gewährleisten und das Risiko des Testens auf unangemessenen Teststufen zu
verringern. Durch die Förderung der Kommunikation und den Einsatz gemeinsamer Tools oder
Frameworks können Teams ihre Teststrategien optimieren und einen nahtlosen Verlauf des
Lebenszyklus von Tests aufrechterhalten. Durch die Kombination der Kriterien aus den Tabellen 3
und 4 kann der Testmanager die optimale Testumgebung auswählen.

3.2.4.3 Einordnung der XiL-Testumgebungen in das V-Modell

Der technische Systementwurf befindet sich auf der linken Seite des V-Modells. Der Tester kann
diesen Entwurf mit einer MiL-Testumgebung testen. Wenn das Modell und die Testumgebung
weiterentwickelt werden, kann der Tester auch Komponententests und Integrationstests mit dieser
Testumgebung durchführen.

Der Tester kann eine SiL-Testumgebung verwenden, wenn einzelne Komponenten des
Testobjekts programmiert und kompiliert werden. Typische Tests für eine SiL-Testumgebung sind
Komponententests und Integrationstests. Diese sind auf der rechten Seite des V-Modells zu
finden.

Bei Systemtests sind bestimmte Funktionalitäten des Testobjekts vollständig entwickelt worden.
Der Tester kann den Systemtest mit einer HiL-Testumgebung durchführen.

Mit einer korrekten Zuordnung der Testumgebung zu den Teststufen kann der gesamte
Testprozess nach den folgenden drei Gesichtspunkten optimiert werden:

Minimierung der Produktrisiken

• Auffinden von teststufenspezifischen Fehlerwirkungen (z. B. Performanz-Effizienz auf
Systemebene innerhalb einer HiL-Umgebung)

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 41 von 73 23.11.2025
© International Software Testing Qualifications Board

Minimierung der Kosten für den Test

• Für jede Testart ist die optimale Teststufe gewählt.

• Tests werden auf frühere, weniger kostspielige und virtuelle Teststufen verlagert.

Konformität mit Normen

• In den Methodentabellen der Norm ISO 26262 werden Testumgebungen in Abhängigkeit
von ASIL empfohlen.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 42 von 73 23.11.2025
© International Software Testing Qualifications Board

4 Statische und dynamische Tests – 230 Minuten
Schlüsselbegriffe
Back-to-Back-Test, Fehlereinfügung, anforderungsbasierter Test

Lernziele für Kapitel 4 Der Lernende kann ...
4.1 Statischer Test
AuT-4.1.1 (K2) … Zweck und Anforderungen der MISRA-C-Programmierrichtlinie anhand

von Beispielen erläutern

AuT-4.1.2 (K3) … ein Anforderungsreview anhand der für den Tester relevanten
Qualitätsmerkmale der Norm ISO/IEC/IEEE 29148 durchführen

4.2 Dynamischer Test
AuT-4.2.1 (K3) … Testfälle entwerfen, um eine modifizierte Bedingungs-

/Entscheidungsüberdeckung zu erreichen

AuT-4.2.2 (K2) … den Einsatz von Back-to-Back-Tests anhand von Beispielen erläutern

AuT-4.2.3 (K2) … Testen mit Fehlereinfügung anhand von Beispielen erläutern

AuT-4.2.4 (K1) … die Prinzipien des anforderungsbasierten Tests wiedergeben

AuT-4.2.5 (K3) … kontextabhängige Kriterien für die Auswahl geeigneter und notwendiger
Testverfahren und Testansätze anwenden

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 43 von 73 23.11.2025
© International Software Testing Qualifications Board

4.1 Statischer Test
Einführung
Statische Tests untersuchen Arbeitsprodukte der Softwareentwicklung, ohne sie auszuführen.
Dazu gehören die Bewertung durch Gutachter (Reviewer) und die werkzeuggestützte statische
Analyse.

4.1.1 Die MISRA-C-Programmierrichtlinien
Es ist Stand der Technik, dass Quellcode konform zu Programmierrichtlinien sein soll. Auch die
Norm ISO 26262 empfiehlt die Einhaltung von Programmierrichtlinien für sicherheitsrelevante
Software26. Programmierrichtlinien helfen, Anomalien im Code zu vermeiden, die zu
Fehlerzuständen führen können. Gleichzeitig unterstützen sie Wartbarkeit und Übertragbarkeit.

MISRA-C definiert Programmierrichtlinien für die Programmiersprache C und wird üblicherweise in
Softwareprojekten für die Automobilindustrie verwendet. Es definiert zwei verschiedene Arten von
Richtlinien: Regeln und Direktiven.

• Regeln sind mit Hilfe von Werkzeugen der statischen Analyse überprüfbar. Beispiel einer
Regel: "Der Quellcode darf keine verschachtelten Kommentare enthalten."

• Direktiven können nicht vollständig von Werkzeugen der statischen Analyse verifiziert
werden. Sie beziehen sich auf Details des Entwicklungsprozesses oder auf Dokumente
außerhalb der Software. Beispiel einer Direktive: "Der Entwickler muss das implementierte
Verhalten ausreichend dokumentieren."

Jede Richtlinie wird eine der folgenden drei Verbindlichkeitsstufen zugewiesen:

• "Advisory"-Richtlinien müssen vom Entwickler befolgt werden, wenn der Aufwand
zumutbar ist.

• "Required"-Richtlinien müssen vom Entwickler befolgt werden; Ausnahmen sind möglich,
müssen aber offiziell genehmigt werden (z. B. durch das Qualitätsmanagement).

• "Mandatory"-Richtlinien müssen vom Entwickler befolgt werden; es gibt keine Ausnahmen.

Organisationen können die Verbindlichkeit für eine Richtlinie individuell anheben, dürfen sie aber
niemals absenken.

4.1.2 Qualitätsmerkmale für Anforderungsreviews
Spezifikationen sind die Grundlage für Entwicklung und Testen. Fehlerzustände in Spezifikationen
führen daher zu kosten- und zeitintensiver Nacharbeit. Dies gilt insbesondere dann, wenn
Fehlerzustände erst in späten Entwicklungsphasen wie Abnahmetests oder im Betrieb festgestellt
werden. Reviews sind eine effektive Maßnahme, um Fehlerzustände in Spezifikationen frühzeitig
zu finden und folglich auch frühzeitig und kostengünstig zu beheben.

Bei der Testanalyse muss der Tester die Spezifikationen für das Testobjekt überprüfen,
insbesondere auf ihre Eignung als Testbasis. Qualitätsmerkmale helfen dem Tester beim Review
der Spezifikationen, sich zu fokussieren und möglichst viele Fehlerzustände zu finden. Die ISO
29148:2018 enthält Qualitätsmerkmale für einzelne Anforderungen und für ganze
Anforderungsspezifikationen.

26 Siehe auch ISO 26262:2018, Teil 6, Abschnitt 5.4.3.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 44 von 73 23.11.2025
© International Software Testing Qualifications Board

Zu den für Tester relevanten Qualitätsmerkmalen der ISO 29148:2018 gehören:

• Überprüfbar: Jede Anforderung kann nachweislich korrekt umgesetzt werden.

• Eindeutig: Jede Anforderung enthält klare Testbedingungen.

• Konsistent: Jede Anforderung ist in sich und mit allen anderen Anforderungen
widerspruchsfrei.

• Vollständig: Jede Anforderung lässt keinen Interpretationsspielraum zu und baut nicht auf
implizitem Wissen oder Erfahrungswissen auf.

• Atomar: Keine Anforderung kann in sinnvolle Teilanforderungen zerlegt werden.

Aus diesen Qualitätsmerkmalen kann der Tester zur Vorbereitung eines Anforderungsreviews eine
Review-Checkliste mit Checklistenpunkten ableiten. Diese Checklistenpunkte müssen spezifischer
sein als die einfache Benennung der Qualitätskriterien, die zu abstrakt sind. Ein Checklistenpunkt
für Konsistenz könnte beispielsweise lauten: "Werden Begriffe über alle Anforderungen hinweg
konsistent verwendet?" Beim Review der Spezifikation muss der Tester die Checklistenpunkte
nach bestem Wissen und Gewissen beantworten.

Laut ISO 29148:2018 sollen Anforderungen auch realisierbar, angemessen, korrekt, konform,
verständlich und notwendig sein. Allerdings ist es für den Tester meist schwierig, diese
Qualitätsmerkmale zu bewerten.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 45 von 73 23.11.2025
© International Software Testing Qualifications Board

4.2 Dynamischer Test

4.2.1 Modifizierter Bedingungs-/Entscheidungstest
Die in diesem Kapitel beschriebenen Testverfahren sind Teil der White-Box-Testverfahren. Der
Tester leitet dabei die Testfälle unmittelbar aus der Struktur des Testobjekts (z. B. des Quellcodes)
ab. Für detaillierte Informationen wird auf den Lehrplan zum Technical Test Analyst [ISTQB_CTAL-
TTA] verwiesen.

Beim Entscheidungstest werden die Testfälle so spezifiziert, dass sie alle möglichen
Entscheidungsergebnisse ausführen, d. h. die "wahren" und "falschen" Ergebnisse jeder
Entscheidung. Eine Entscheidung besteht aus einer oder mehreren Bedingungen, die jeweils als
"wahr" oder "falsch" bewertet werden können. Das Ergebnis der Entscheidung wird durch die
logische Kombination dieser Bedingungswerte bestimmt.

Wenn eine Entscheidung nur aus einer Bedingung besteht, erreichen Entscheidungstests und
Bedingungstests die gleiche Überdeckung. Für Entscheidungen mit mehreren Bedingungen stehen
ausführlichere Testverfahren zur Verfügung, die im Folgenden beschrieben werden:

• Bedingungstest (Testverfahren A in Tabelle 5): Der Tester entwirft Testfälle mit dem Ziel,
die Wahr/Falsch-Ergebnisse jeder einzelnen Bedingung abzudecken. Bei einer schlechten
Auswahl der Testdaten (siehe Tabelle 5) kann eine 100%ige Bedingungsüberdeckung
erreicht werden, obwohl keine vollständige Entscheidungsüberdeckung erzielt wurde. Für
die beiden Testfälle TF 1 und TF 2 werden die einzelnen Bedingungen B1 und B2 sowohl
als "wahr" als auch als "falsch" bewertet, doch die Entscheidungsergebnisse werden in
beiden Fällen als "falsch" bewertet.

• Mehrfachbedingungstest (Testverfahren B in Tabelle 5): Der Tester entwirft Testfälle mit
dem Ziel, alle Wertekombinationen in Bezug auf die einzelnen Bedingungen abzudecken.
Wenn jede Wertekombination getestet wird, wird auch jedes Entscheidungsergebnis
getestet.

• Modifizierter Bedingungs-/Entscheidungstest (MC/DC) (Testverfahren C in Tabelle 5):
Dieses Testverfahren ist vergleichbar mit dem Mehrfachbedingungstest (B). Es
berücksichtigt jedoch nur Kombinationen, bei denen einzelne Bedingungen (B1 und B2)
das Entscheidungsergebnis unabhängig voneinander beeinflussen. Im Fall von TF 4
ändert sich das Ergebnis der Entscheidung nicht, wenn B1 oder B2 einzeln von "falsch"
auf "wahr" geändert wird (d. h., das Entscheidungsergebnis bleibt "falsch"). Eine 100%ige
MC/DC-Überdeckung kann mit den Testfällen TF 1, TF 2 und TF 3 erreicht werden; TF 4
muss nicht berücksichtigt werden.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 46 von 73 23.11.2025
© International Software Testing Qualifications Board

Tabelle 5 zeigt ein Beispiel für die notwendigen Testfälle für eine 100%ige Überdeckung in
Abhängigkeit vom gewählten Testverfahren:

 Einzelne Bedingungen Entscheidungsergebnis
für den Ausdruck Testverfahren

Testfall B1 B2 E = B1 UND B2 A B C

TF 1 B1=WAHR B2=FALSCH E=FALSCH X X X

TF 2 B1=FALSCH B2=WAHR E=FALSCH X X X

TF 3 B1=WAHR B2=WAHR E=WAHR X X

TF 4 B1=FALSCH B2=FALSCH E=FALSCH X

Tabelle 5: Vergleich der Testverfahren: Bedingungstest (A), Mehrfachbedingungstest (B)
und modifizierter Bedingungs-/Entscheidungstest (MC/DC-Test) (C)
Das Beispiel zeigt die Grenzen dieser Testverfahren: Beim Bedingungstest (A) geht der Tester
trotz einer Bedingungsüberdeckung von 100 % das Risiko ein, nur ein Entscheidungsergebnis
abzudecken. Eine bessere Auswahl der Testfälle würde dies durch den Einsatz der Testfälle TF 3
und TF 4 korrigieren.

Mit Mehrfachbedingungstests (B) kann der Tester alle möglichen Eingaben und Ausgaben
abdecken. Allerdings ist die Anzahl der auszuführenden Tests bei diesen Testverfahren am
höchsten.

Mit modifizierten Bedingungs-/Entscheidungstests (C) kann der Tester eine vollständige
Überdeckung aller Einzelbedingungen und aller Entscheidungen mit einer geringeren Anzahl von
Tests im Vergleich zu Mehrfachbedingungstests erreichen.

4.2.2 Back-to-Back-Test
Back-to-Back-Test ist ein Testansatz, bei dem ein Testobjekt mit Hilfe eines Pseudo-Orakels
getestet wird, um erwartete Ergebnisse zu erzeugen. Dazu führt der Tester denselben Testfall auf
allen Varianten aus und vergleicht die Testergebnisse der Varianten. Sind die Testergebnisse
identisch, ist der Test bestanden. Unterscheiden sich die Testergebnisse, wird die Ursache für die
festgestellte Differenz analysiert.

Den Testobjekten müssen hierzu die gleichen inhaltlichen Anforderungen zugrunde liegen. Nur
dann können sie ein vergleichbares Verhalten zeigen. Diese Anforderungen dienen typischerweise
als Grundlage für die Ableitung der Testeingaben, nicht aber als Testorakel zur Festlegung der
erwarteten Ergebnisse. Stattdessen wird bei Back-to-Back-Tests das Verhalten eines Testobjekts,
mit dem eines anderen verglichen, wobei das eine als Pseudo-Orakel für das andere dient. Auf
diese Weise wird erwartet, dass der Test unbeabsichtigte Unterschiede – selbst sehr geringe –
zwischen den Testobjekten oder ihren Umgebungen aufdeckt.

Im einfachsten Fall handelt es sich bei den Testobjekten von Back-to-Back-Tests um verschiedene
Versionen derselben Software. In diesem Fall dient eine frühere Version des Testobjekts als
Pseudo-Orakel für die Back-to-Back-Tests, ähnlich wie bei einem Regressionstest. Eine
Alternative ist der Vergleich eines ausführbaren Modells mit einem daraus manuell oder
automatisch abgeleiteten Code. In diesem Fall handelt es sich um eine Form des modellbasierten
Testens, bei dem das ausführbare Modell ebenfalls als Pseudo-Orakel dient. Dieser Testansatz ist
daher sehr gut für den automatisierten Testentwurf geeignet. Hier leitet der Tester nicht nur das
erwartete Ergebnis aus dem Modell ab, sondern auch automatisierte Testfälle.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 47 von 73 23.11.2025
© International Software Testing Qualifications Board

4.2.3 Fehlereinfügungstest
Fehlereinfügungstest ist ein Testansatz, mit dem die Reaktion einer Komponente oder eines
Systems auf ungünstige Bedingungen (z. B. einen Fehlerzustand – in diesem Zusammenhang
auch als Fehler bezeichnet) bewertet werden soll. Programmiertechniken wie die
Fehlerbehandlung dienen dem Zweck, das System auf interne und externe Fehlerzustände robust
und sicher reagieren zu lassen. Um Fehlereinfügungstests durchzuführen, kann der Tester an
folgenden Stellen gezielt Fehlerzustände in das System einbringen:

• Fehlerzustände in externen Komponenten: z. B. das Erkennen unplausibler Werte von
Sensoren

• Fehlerzustände in Schnittstellen: z. B. Vermeidung von Schäden durch Kurzschlüsse oder
verlorene Nachrichten

• Fehlerzustände in der Anwendung: Erkennung und Behandlung interner Fehlerzustände

Je nach System und Testumgebung können Fehler auf unterschiedliche Weise injiziert werden:

• Bei der klassischen Fehlereinfügung fügt der Tester einen Fehlerzustand durch
Manipulation des physischen Testobjekts ein.

• Externe Fehlerzustände oder schnittstellenbezogene Fehler werden typischerweise zur
Laufzeit in einer HiL-Testumgebung mit einer FIU simuliert.

• Softwarebasierte Fehlerzustände, wie z. B. Schnittstellen- oder interne Fehler, werden
häufig in einer SiL-Testumgebung oder direkt in der Entwicklungsumgebung mit Hilfe von
Tools wie Debuggern oder dem Universal Measurement and Calibration Protocol (XCP)
simuliert.

4.2.4 Anforderungsbasierter Test
Beim anforderungsbasierten Testen analysiert der Tester typischerweise textuelle Anforderungen,
um Testbedingungen aus einzelnen atomaren Anforderungen abzuleiten, er entwirft Testfälle, die
die Anforderungen prüfen, und führt diese Testfälle aus. Diese Dekomposition beinhaltet die
Identifizierung verschiedener testbarer Aspekte innerhalb einer Anforderung. Jede atomare
Anforderung sollte ein einzelnes Verhalten oder eine Bedingung beschreiben, die unabhängig
voneinander überprüft werden kann.

Durch die Zerlegung einer komplexen oder High-Level-Anforderung in solch granulare Elemente
gewährleistet der Tester eine umfassende Überdeckung und vermeidet, dass versteckte oder
implizite Erwartungen übersehen werden. Die Überdeckung der Anforderungen wird gemessen als
das Verhältnis zwischen den atomaren Anforderungen, die von mindestens einem Testfall
abgedeckt werden, und der Gesamtzahl der atomaren Anforderungen.

Testfälle für das anforderungsbasierte Testen sind in der Regel positive Testfälle, die bestätigen,
dass die angegebenen Anforderungen erfüllt sind. Negative Testfälle werden oft durch ergänzende
Testverfahren wie Äquivalenzklassenbildung, intuitive Testfallermittlung oder exploratives Testen
abgeleitet, obwohl Anforderungen auch explizit solche negativen Bedingungen definieren können.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 48 von 73 23.11.2025
© International Software Testing Qualifications Board

4.2.5 Kontextabhängige Auswahl
Mehrere Testverfahren und Testansätze sind im Kontext von Automobilsystemen von Bedeutung.
Einige davon werden im CTFL®-Lehrplan [ISTQB_CTFL] vorgestellt, während andere in Abschnitt
4.2 diskutiert werden. Dazu gehören:

• Anforderungsbasierter Test

• Äquivalenzklassenbildung

• Grenzwertanalyse

• Anweisungstest

• Zweigtest

• Modifizierter Bedingungs-/Entscheidungstest (MC/DC)

• Intuitive Testfallermittlung

• Fehlereinfügungstest

• Back-to-Back-Test

Die Auswahl der geeigneten Testverfahren und Testansätze hängt von mehreren Faktoren ab:

Stand der Technik
Entspricht das Testverfahren oder der Testansatz dem aktuellen Stand der Technik für diesen
Zweck? Hier geben Normen wie ISO/IEC/IEEE 29119 und ISO 26262 wertvolle Hinweise.
Insbesondere die ISO/IEC/IEEE 29119-4 bietet einen strukturierten Überblick über standardisierte
Testverfahren, einschließlich entsprechender Überdeckungsmaße, unterteilt in Black-Box-
Testverfahren, White-Box-Testverfahren und erfahrungsbasierte Testverfahren. Die Norm
ISO 26262 empfiehlt darüber hinaus anzuwendende Testverfahren und Testansätze in
Abhängigkeit des ASIL, wie in Abschnitt 2.2 erläutert. Abweichungen von den Empfehlungen
müssen sorgfältig erwogen und begründet werden.

Testbasis
Liefert die Testbasis geeignete Testbedingungen für das Testverfahren? Beispielsweise kann der
Tester nur Äquivalenzklassen bilden, wenn die Testbasis Parameter oder Variablen enthält. Deren
Werte müssen sich in Äquivalenzklassen zusammenfassen lassen. Ähnliches gilt für Grenzwerte.
Sie können nur getestet werden, wenn die Werte im Wertebereich geordnet sind.

Risikobasiertes Testen
Risikobasiertes Testen bedeutet die Identifizierung von Produktrisiken und die Berücksichtigung
der Risikostufe bei der Auswahl der Testverfahren und Testansätze. So ist z. B. das Testen eines
Grenzwertes nur dann sinnvoll, wenn das Risiko besteht, dass Grenzwertverletzungen auftreten
und die Auswirkungen solcher Verletzungen ein Risiko darstellen.

Teststufe
Kann das Testverfahren bzw. der Testansatz auf der Teststufe eingesetzt werden? White-Box-
Tests eignen sich besonders, wenn der Quellcode oder die interne Struktur als Testbasis dient. Im
Idealfall ist der strukturelle Überdeckungsgrad messbar. Für Black-Box-Tests muss das Testobjekt
verfügbar und beobachtbar sein. Zum Beispiel kann das Testen einer Äquivalenzklasse eines
Sensors beim Systemtest effizienter sein als beim Komponententest. Wenn ein Testverfahren oder
ein Testansatz auf einer Teststufe nicht anwendbar ist, sollte der Tester in Übereinstimmung mit
der Teststrategie eine andere Teststufe wählen.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 49 von 73 23.11.2025
© International Software Testing Qualifications Board

Beispiele für die Auswahl von Testverfahren und Testansätzen
Tabelle 6 enthält eine Auflistung von Testverfahren und Testansätzen, ergänzt durch ein Beispiel
für die Bewertung mehrerer der oben genannten Faktoren durch einen Anwender und die darauf
basierende Wahl des Testverfahrens bzw. des Testansatzes.

Testverfahren /
Testansatz

Empfohlen
für ASIL A?

Testbasis
geeignet?

Risiko,
wenn
Fehler-
zustand
nicht
erkannt
wird?

Teststufe
Systemtest
sinnvoll? Auswahl

1 Anforderungsbasierter
Test ++ JA ++ JA X

2 Äquivalenzklassen-
bildung + JA ++ JA X

3 Grenzwertanalyse + NEIN - JA

4 Anweisungstest ++ JA ++ NEIN

5 Entscheidungstest + JA ++ NEIN

6 MC/DC + JA + NEIN

7 Intuitive
Testfallermittlung + NEIN ++ JA

8 Testen der
Fehlereinfügung + JA + NEIN

9 Back-to-Back-Test + NEIN ++ JA

Tabelle 6: Beispiel für die Wahl des Testverfahrens / bzw. Testansatzes

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 50 von 73 23.11.2025
© International Software Testing Qualifications Board

5 Liste der Abkürzungen

Abkürzung Definition/Bedeutung

ACQ Acquisition (ASPICE)

API Application Programming Interface

ASIL Automotive Safety Integrity Level

ASAM Association for Standardization of Automation and Measuring Systems

ASPICE Automotive SPICE

AUTOSAR Automotive Open System Architecture

AUTOSIG Automotive Special Interest Group

BP Base Practice (ASPICE) (Basispraktik)

BSW Basic Software (AUTOSAR) (Basissoftware)

CAD CANdela Diagnostic Description

CAN Controller Area Network

CTFL Certified Tester Foundation Level

E/E elektrisch/elektronisch

ECU Electronic Control Unit (Steuergerät)

EOP End of Production (Ende der Produktion)

FIU Fault Insertion Unit (Fehlereinfügungseinheit)

GP Generic Practice (ASPICE) (generische Praktik)

HARA Hazard Analysis and Risk Assessment (Gefährdungsanalyse und
Risikobewertung)

HiL Hardware-in-the-Loop

IEC International Electrotechnical Commission

ISO International Organization for Standardization

MAN Management (ASPICE)

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 51 von 73 23.11.2025
© International Software Testing Qualifications Board

Abkürzung Definition/Bedeutung

MCD Measurement, Calibration and Diagnostics

MC/DC Modifizierte Bedingungs-/Entscheidungsüberdeckung

MiL Model-in-the-Loop

MISRA Motor Industry Software Reliability Association

MSIL Motorcycle Safety Integrity Level

OEM Original Equipment Manufacturer (Erstausrüster)

PA Process Attribute (ASPICE)

PIM Process Improvement (ASPICE)

PoC Point of Control

PoO Point of Observation

PRM Prozessreferenzmodell

QM Qualitätsmanagement

QMS Qualitätsmanagementsystem

REU Reuse (ASPICE)

RTE Run-Time Environment (AUTOSAR) (Laufzeitumgebung)

SiL Software-in-the-Loop

SOP Start of Production (Beginn der Produktion)

SOVD Service-Oriented Vehicle Diagnostics

SPICE Software Process Improvement and Capability Determination

SPL Supplier (ASPICE)

SUP Supporting (ASPICE)

SW-C Software Component (AUTOSAR) (Softwarekomponente)

SWE Software Engineering (ASPICE)

SYS System Engineering (ASPICE)

VAL Validation (ASPICE)

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 52 von 73 23.11.2025
© International Software Testing Qualifications Board

Abkürzung Definition/Bedeutung

VDA Verband der Automobilindustrie e.V.

XCP Universal Measurement and Calibration Protocol

XiL X-in-the-loop: Ein allgemeiner Begriff für alle In-the-Loop-
Testumgebungen wie MiL, SiL und HiL

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 53 von 73 23.11.2025
© International Software Testing Qualifications Board

6 Domänenspezifische Begriffe

Begriff Definition

Automotive Open System
Architecture

Eine Entwicklungspartnerschaft, die einen
offenen Industriestandard für die
Softwarearchitektur in der Automobilindustrie
etabliert.
Hinweis: Der Begriff wird auch für die
standardisierte Softwarearchitektur und den
damit verbundenen System-
/Softwareentwicklungsansatz verwendet.

Automotive Safety Integrity Level Ein Safety Integrity Level für die funktionale
Sicherheit im Automobil, definiert in ISO
26262.

Automotive SPICE Ein Prozessreferenzmodell und ein
zugehöriges Prozess-Assessment-Modell in
der Automobilindustrie.

Basissoftware (AUTOSAR) In AUTOSAR eine Softwareschicht, die aus
standardisierten, hardwareorientierten
Komponenten besteht.

Breakout-Box Eine Einrichtung zum Analysieren,
Unterbrechen oder Manipulieren von
physikalischen Signalen in elektrischen
Leitungen.

Bussystem Ein Netzwerk von Steuergeräten, die über
dieselbe Verbindung Informationen
austauschen.

Closed-Loop-System Ein System, in dem eine
Steuerungsmaßnahme oder ein Input vom
Output oder von Änderungen des Outputs
abhängig ist.

Direktive (MISRA-C) Eine Programmierrichtlinie in MISRA-C, die
durch statische Analyse nicht vollständig
verifizierbar ist.

Echtzeitfähiger Computer Ein Computer, der in der Lage ist, Signale in
Echtzeit zu verarbeiten.

ECU-Konfigurationsbeschreibung
(AUTOSAR)

Die für die Integration von
Softwarekomponenten mit einem Steuergerät
erforderlichen Daten.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 54 von 73 23.11.2025
© International Software Testing Qualifications Board

Begriff Definition

ECU-Auszug (AUTOSAR) Systemkonfigurationsdaten für ein
elektronisches Steuergerät.

Erstausrüster (OEM) In der Automobilbranche ein
Automobilhersteller.

Fähigkeitsdimension In ASPICE eine Dimension eines Prozess-
Assessment-Modells, die die zu bewertenden
Prozessattribute definiert.

Fähigkeitsgrad In ASPICE eine Stufe, die einem Prozess auf
der Grundlage der Bewertung der
entsprechenden Prozessattribute in einem
Prozess-Assessment zugewiesen wird.

Fähigkeitsindikator In ASPICE ein Indikator für die
Prozessfähigkeit, der im Prozess-Assessment
verwendet wird.

Freigabe Dokumentation der Freigabe eines
Freigabeobjektes.

Freigabeobjekt Ein identifizierbares Element mit implementierten
Funktionen, Eigenschaften und
Verwendungszweck.

Freigabeempfehlung Eine auf den Testergebnissen basierende
Empfehlung, ob ein Testelement freigegeben
werden soll.

Freigabeprozess Ein Prozess, der zu einer Freigabe führt.

Laufzeitumgebung (AUTOSAR) In AUTOSAR die Abstraktionsschicht, die den
Datenaustausch zwischen AUTOSAR-
Softwarekomponenten sowie zwischen
Anwendungs- und Basissoftware sowohl
innerhalb eines Steuergeräts als auch
zwischen Steuergeräten steuert und
implementiert.

MISRA-C Eine von MISRA bereitgestellte
Programmierrichtlinie für die Verwendung der
Programmiersprache C für kritische Systeme.

Open-Loop-System Ein System, in dem eine Steuerungsaktion
oder eine Eingabe unabhängig von der
Ausgabe oder von Änderungen der Ausgabe
ist.

Produktentwicklungsprozess Ein Prozess, der alle Aktivitäten von der ersten
Produktidee bis zur Produktion umfasst.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 55 von 73 23.11.2025
© International Software Testing Qualifications Board

Begriff Definition

Prozessattribut In ASPICE eine Reihe von messbaren
Merkmalen eines Prozesses für ein Prozess-
Assessment.

Prozessdimension In ASPICE eine Dimension eines Prozess-
Assessment-Modells, welche die zu
bewertenden Prozesse definiert.

Realzeit Die Verarbeitung von Daten, so dass die
Ergebnisse innerhalb eines vorher
festgelegten Zeitraums zur Verfügung stehen.

Regel (MISRA-C) Eine Programmierrichtlinie in MISRA-C, die
durch statische Analyse vollständig
verifizierbar ist.

Sicherheitslebenszyklus Der Lebenszyklus eines sicherheitsrelevanten
Systems von der Entstehung bis zur
Entsorgung.

Simulationszeit Der Zeitrahmen einer Computersimulation.

Softwarekomponentenverifizierung
und Integrationsverifizierung
(ASPICE)

In Automotive SPICE eine Verifizierung der
integrierten Software auf der Grundlage der
Softwarearchitektur.

Software-Unit-Verifizierung
(ASPICE)

In Automotive SPICE eine Verifizierung der
Software-Units auf Konsistenz mit ihrem
detaillierten Entwurf.

Softwarekomponente (AUTOSAR) In AUTOSAR eine Komponente in der
hardwareunabhängigen
Anwendungssoftwareschicht.

Softwareverifizierung (ASPICE) In Automotive SPICE eine Verifizierung der
integrierten Software auf Konsistenz mit den
Anforderungen an die Software.

Steuergerät In der Automobilindustrie ein eingebettetes
System, das elektrische/elektronische (Sub-
)Systeme in einem Fahrzeug steuert.

Systemkonfigurationsbeschreibung
(AUTOSAR)

Die Daten, die bei der Integration aller
elektronischen Steuergeräte in einem
Fahrzeug verwendet werden.

Systemintegration und
Integrationsverifizierung (ASPICE)

In Automotive SPICE eine Verifizierung der
integrierten Systemelemente auf Konsistenz
mit der Systemarchitektur.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 56 von 73 23.11.2025
© International Software Testing Qualifications Board

Begriff Definition

Systemlebenszyklus Die Phasen der Entwicklung eines Systems
bis zu seiner Außerbetriebnahme.

Systemverifizierung (ASPICE) In Automotive SPICE eine Verifizierung des
Systems auf Konsistenz mit den
Systemanforderungen.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 57 von 73 23.11.2025
© International Software Testing Qualifications Board

7 Referenzen

7.1 Normen
Automotive SPICE 4.0 (2023), Automotive SPICE Process Assessment / Reference

Model

ISO 14229 (2020), Road vehicles – Unified diagnostic services (UDS)

ISO 26262 (2018), Road vehicles – Functional safety

ISO 26262-1 (2018), Road vehicles – Functional safety
Part 1: Vocabulary

ISO 26262-2 (2018), Road vehicles – Functional safety
Part 2: Management of functional safety

ISO 26262-3 (2018), Road vehicles – Functional safety
Part 3: Concept phase

ISO 26263-4 (2018), Road vehicles – Functional safety
Part 4: Product development at the system level

ISO 26263-5 (2018), Road vehicles – Functional safety
Part 5: Product development at the hardware level

ISO 26263-6 (2018), Road vehicles – Functional safety
Part 6: Product development at the software level

ISO 26263-7 (2018), Road vehicles – Functional safety
Part 7: Production, operation, service and decommissioning

ISO 26263-8 (2018), Road vehicles – Functional safety
Part 8: Supporting processes

ISO 26263-9 (2018), Road vehicles – Functional safety
Part 9: Automotive safety integrity level (ASIL)-oriented and
safety-oriented analyses

ISO 26263-10 (2018), Road vehicles – Functional safety
Part 10: Guidelines on ISO 26262

ISO/IEC 25010 (2023), Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE)
Product quality model

ISO/IEC 33020 (2019), Information technology – Process assessment
Process measurement framework for assessment of process
capability

ISO/IEC/IEEE 12207 (2017), Systems and software engineering – Software life cycle
processes

ISO/IEC/IEEE 15288 (2023), Systems and software engineering – System life cycle
processes

ISO/IEC/IEEE 24748-1 (2018), Systems and software engineering – Life cycle
management
Part 1: Guide for life cycle management

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 58 von 73 23.11.2025
© International Software Testing Qualifications Board

ISO/IEC/IEEE 29119-1 (2022), Software and systems engineering – Software testing
Part 1: General concepts

ISO/IEC/IEEE 29119-2 (2021), Software and systems engineering – Software testing
Part 2: Test processes

ISO/IEC/IEEE 29119-3 (2021), Software and systems engineering – Software testing
Part 3: Test documentation

ISO/IEC/IEEE 29119-4 (2021), Software and systems engineering – Software testing
Part 4: Test techniques

ISO/IEC/IEEE 29148 (2018), Systems and software engineering – Life cycle processes
– Requirements engineering

MISRA C (2025), Guidelines for the use of the C language in critical systems

7.2 ISTQB®-Dokumente
[ISTQB_CTAL-TTA] ISTQB® Certified Tester Advanced Level – Technical Test Analyst

V4.0, Lehrplan, 2022

[ISTQB_CTFL] ISTQB® Certified Tester Foundation Level V4.0.2, Lehrplan, 2025

7.3 Glossar-Referenzen
Referenzen für die in diesem Lehrplan verwendeten Begriffe:

IREB®-Glossar https://cpre.ireb.org/en/downloads-and-resources/glossary

ISTQB®-Glossar https://glossary.istqb.org/

https://cpre.ireb.org/en/downloads-and-resources/glossary
https://glossary.istqb.org/

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 59 von 73 23.11.2025
© International Software Testing Qualifications Board

8 Marken
CTFL® ist eine eingetragene Marke des German Testing Board (GTB) e. V. nur in der EU.

GTB® ist eine eingetragene Marke des German Testing Board (GTB) e. V. nur in der EU.

ISTQB® ist eine eingetragene Marke des International Software Testing Qualifications Board.

Automotive SPICE® ist eine eingetragene Marke des Verbandes der Automobilindustrie (VDA).

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 60 von 73 23.11.2025
© International Software Testing Qualifications Board

9 Anhang A – Lernziele/kognitive Stufen
Die spezifischen Lernziele für diesen Lehrplan sind am Anfang jedes Kapitels aufgeführt. Jedes
Thema des Lehrplans wird entsprechend dem jeweiligen Lernziel geprüft.

Die Lernziele beginnen mit einem Aktionsverb, das der jeweiligen kognitiven Stufe27 entspricht, wie
unten aufgeführt.

Stufe 1: Erinnern (K1)
Die Lernenden können sich an einen Begriff oder ein Konzept erinnern, es erkennen und
wiedergeben.

Aktionsverben: Erinnern, erkennen, wiedergeben

Beispiele
Sich an die Konzepte der Testpyramide erinnern.

Die typischen Ziele des Testens wiedererkennen.

Stufe 2: Verstehen (K2)
Die Lernenden können die Gründe oder Erklärungen für Aussagen zum Thema auswählen und
können das zugehörige Konzept des Softwaretests zusammenfassen, vergleichen, einordnen und
Beispiele dafür geben.

Aktionsverben: Klassifizieren, vergleichen, differenzieren, unterscheiden, erläutern, diskutieren,
Beispiele nennen, schließen, zusammenfassen

Beispiele Anmerkungen
Testwerkzeuge nach ihrem Zweck und den
Testaktivitäten, die sie unterstützen,
klassifizieren.

Die verschiedenen Teststufen vergleichen.

Kann verwendet werden, um nach
Gemeinsamkeiten, Unterschieden oder
beidem zu suchen.

Zwischen Testen und Debugging differenzieren. Sucht nach Unterschieden zwischen
Konzepten.

Zwischen Projektrisiken und Produktrisiken
unterscheiden.

Ermöglicht die separate Klassifizierung von
zwei (oder mehr) Konzepten.

Den Einfluss des Kontexts auf den Testprozess
erläutern.

Beispiele nennen, warum Testen notwendig ist.

Aus einem gegebenen Profil von
Fehlerzuständen auf die Grundursache von
Fehlern schließen.

27 Quelle zu den hier verwendeten kognitiven Stufen von Lernzielen: Anderson, L. W.; Krathwohl, D. R. (Hrsg.). A
Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom´s Taxonomy of Educational Objectives. Allyn &
Bacon, 2001

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 61 von 73 23.11.2025
© International Software Testing Qualifications Board

Beispiele Anmerkungen
Die Aktivitäten des Prozesses zur Überprüfung
eines Arbeitsergebnisses zusammenfassen.

Stufe 3: Anwenden (K3)
Die Lernenden können ein Verfahren durchführen, wenn sie mit einer vertrauten Aufgabe
konfrontiert werden, oder das richtige Verfahren auswählen und es auf einen gegebenen Kontext
anwenden.

Aktionsverben: Anwenden, umsetzen, vorbereiten, nutzen

Beispiele Anmerkungen
Grenzwertanalyse anwenden, um Testfälle aus
gegebenen Anforderungen abzuleiten.

Sollte sich auf ein Verfahren / eine Technik /
einen Prozess etc. beziehen.

Methoden zur Erfassung von Metriken
umsetzen, um technische und
Managementanforderungen zu unterstützen.

Tests zur Installierbarkeit von mobilen
Anwendungen vorbereiten.

Die Verfolgbarkeit nutzen, um den Testfortschritt
auf Vollständigkeit und Konsistenz mit den
Testzielen, der Teststrategie und dem Testplan
zu überwachen.

Könnte in einem Lernziel verwendet werden,
bei dem die Lernenden in der Lage sein
sollen, eine Technik oder ein Verfahren
anzuwenden. Ähnlich wie "anwenden".

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 62 von 73 23.11.2025
© International Software Testing Qualifications Board

10 Anhang B – Verfolgbarkeitsmatrix des geschäftlichen Nutzens (Business
Outcomes) mit Lernzielen

In diesem Kapitel wird die Verfolgbarkeit zwischen geschäftlichen Nutzen und den Lernzielen des Lehrplans Certified Tester – Automotive
Software Tester aufgeführt.

Geschäftlicher Nutzen: DerAutomotive Software Tester kann ... BO1 BO2 BO3 BO4 BO5

AuT-BO1 … effektiv in einem Testteam
zusammenarbeiten. ("Zusammenarbeiten")

 37

AuT-BO2

… die aus dem ISTQB® Certified Tester
Foundation Level (CTFL®) bekannten
Testverfahren an die spezifischen
Anforderungen des Projekts anpassen.
("Anpassen")

 7

AuT-BO3

… die grundlegenden Anforderungen der
relevanten Normen (z. B. Automotive SPICE®
und ISO 26262) bei der Auswahl geeigneter
Testverfahren berücksichtigen. ("Auswählen")

 24

AuT-BO4

… das Testteam bei der risikobasierten
Planung der Testaktivitäten unterstützen und
bekannte Strukturierungs- und
Priorisierungselemente anwenden.
("Unterstützen & anwenden")

 9

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 63 von 73 23.11.2025
© International Software Testing Qualifications Board

Geschäftlicher Nutzen: DerAutomotive Software Tester kann ... BO1 BO2 BO3 BO4 BO5

AuT-BO5 … virtuelle Testumgebungen (d. h. MiL, SiL und
HiL) anwenden. ("Anwenden")

 13

Eindeutige
LO Lernziel K-Niveau

1 Einführung

1.1
Anforderungen aus divergierenden
Projektzielen und zunehmender
Produktkomplexität

AuT-1.1

… anhand von Beispielen die
Herausforderungen, die sich bei der
Produktentwicklung in der Automobilindustrie
aus divergierenden Projektzielen und der
zunehmenden Produktkomplexität ergeben,
erläutern

K2 X

1.2 Projektaspekte, die von Normen beeinflusst
werden

AuT-1.2
… Projektaspekte, die von Normen beeinflusst
werden (z. B. Zeit, Kosten, Qualität,
Projektrisiken und Produktrisiken), wiedergeben

K1 X

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 64 von 73 23.11.2025
© International Software Testing Qualifications Board

Geschäftlicher Nutzen: DerAutomotive Software Tester kann ... BO1 BO2 BO3 BO4 BO5

1.3 Die sechs generischen Phasen des
Systemlebenszyklus

AuT-1.3
… die sechs generischen Phasen des
Systemlebenszyklus nach ISO/IEC/IEEE
24748-1 wiedergeben

K1 X

1.4 Der Beitrag und die Beteiligung des Testers am
Freigabeprozess

AuT-1.4 … sich an die Rolle (d. h. Beitrag und Mitarbeit)
des Testers im Freigabeprozess erinnern K1 X

2 Normen für das Testen von
elektrischen/elektronischen (E/E-)Systemen

2.1 Automotive SPICE (ASPICE)

AuT-
2.1.1.1

… die zwei Dimensionen von ASPICE
wiedergeben K1 X

AuT-
2.1.1.3

… die Fähigkeitsstufen 0 bis 3 von ASPICE
erläutern K2 X

AuT-
2.1.2.1

… sich an den Zweck der testspezifischen
Prozesse von ASPICE erinnern K1 X X

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 65 von 73 23.11.2025
© International Software Testing Qualifications Board

Geschäftlicher Nutzen: DerAutomotive Software Tester kann ... BO1 BO2 BO3 BO4 BO5

AuT-
2.1.2.2

… die Bedeutung der vier Bewertungsstufen
und der Fähigkeitsindikatoren von ASPICE aus
Sicht des Testens erläutern

K2 X

AuT-
2.1.2.3

… die Anforderungen von ASPICE an eine
Teststrategie einschließlich der Kriterien für die
Regressionsverifizierung erläutern

K2 X X X

AuT-
2.1.2.4

… sich an die Anforderungen von ASPICE an
Testmittel erinnern K1 X X X

AuT-
2.1.2.5

… Maßnahmen zur Software-Unit-Verifizierung
anwenden K3 X X X

AuT-
2.1.2.6

… die Anforderungen an die Verfolgbarkeit von
ASPICE aus Sicht des Testens erläutern K2 X X

2.2 ISO 26262

AuT-
2.2.1.1

… das Ziel der funktionalen Sicherheit für E/E-
Systeme erläutern K2 X

AuT-
2.2.1.2

… den Beitrag des Testers zur Sicherheitskultur
nennen K1 X X

AuT-2.2.2
… die Rolle des Testers im Rahmen des
Sicherheitslebenszyklus nach ISO 26262
diskutieren

K2 X X

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 66 von 73 23.11.2025
© International Software Testing Qualifications Board

Geschäftlicher Nutzen: DerAutomotive Software Tester kann ... BO1 BO2 BO3 BO4 BO5

AuT-
2.2.3.2

… die Teile der ISO 26262 nennen, die für den
Tester relevant sind K1 X X

AuT-
2.2.4.1 … die Kritikalitätsstufen des ASIL wiedergeben K1 X X

AuT-
2.2.4.2

… den Einfluss des ASIL auf die Testverfahren
und Testarten für statische und dynamische
Tests und den daraus resultierenden
Testumfang erläutern

K2 X X X X

AuT-2.2.5 … die Methodentabellen der ISO 26262
anwenden K3 X X X X

2.3 AUTOSAR

AuT-2.3.1 … die Projektziele von AUTOSAR wiedergeben K1 X

AuT-2.3.3 … sich an den Einfluss von AUTOSAR auf die
Arbeit des Testers erinnern

K1 X X X

2.4 Vergleich von ASPICE, ISO 26262 und CTFL®

AuT-2.4.1 … die unterschiedlichen Ziele von ASPICE und
ISO 26262 wiedergeben K1 X

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 67 von 73 23.11.2025
© International Software Testing Qualifications Board

Geschäftlicher Nutzen: DerAutomotive Software Tester kann ... BO1 BO2 BO3 BO4 BO5

AuT-2.4.2
… die Unterschiede zwischen ASPICE, ISO
26262 und CTFL® in Bezug auf die Teststufen
erläutern

K2 X X X

3 Testen in einer virtuellen Umgebung

3.1 Testumgebung im Allgemeinen

AuT-3.1.1
… sich an die Motivation für eine
Testumgebung in der Automobilentwicklung
erinnern

K1
X X

AuT-3.1.2
… die allgemeinen Bestandteile einer
automobilspezifischen Testumgebung
wiedergeben

K1
X X

AuT-3.1.3 … die Unterschiede zwischen Closed-Loop-
Systemen und Open-Loop-Systemen erläutern

K2 X X

AuT-3.1.4 … die wesentlichen Funktionen, Datenbasen
und Protokolle eines Steuergeräts wiedergeben

K1 X X

3.2 Testen in XiL-Testumgebungen

AuT-
3.2.1.1

… den Aufbau einer MiL-Testumgebung
wiedergeben

K1 X X

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 68 von 73 23.11.2025
© International Software Testing Qualifications Board

Geschäftlicher Nutzen: DerAutomotive Software Tester kann ... BO1 BO2 BO3 BO4 BO5

AuT-
3.2.1.2

… die Einsatzgebiete und Randbedingungen
einer MiL-Testumgebung erläutern

K2 X X

AuT-
3.2.2.1

… den Aufbau einer SiL-Testumgebung
wiedergeben

K1 X X

AuT-
3.2.2.2

… die Einsatzgebiete und die
Randbedingungen einer SiL-Testumgebung
nennen

K1
X X

AuT-
3.2.3.1

… den Aufbau einer HiL-Testumgebung
wiedergeben

K1 X X

AuT-
3.2.3.2

… die Einsatzgebiete und die
Randbedingungen einer HiL-Testumgebung
erläutern

K2
X X

AuT-
3.2.4.1

… die Vor- und Nachteile des Testens anhand
von Kriterien für XiL-Testumgebungen
zusammenfassen

K2
X X X

AuT-
3.2.4.2

… Kriterien für die Zuordnung eines bestimmten
Umfangs des Tests zu einer oder mehreren
Testumgebungen anwenden

K3
X X X

AuT-
3.2.4.3

… die XiL-Testumgebungen im V-Modell
skizzieren

K1 X X X

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 69 von 73 23.11.2025
© International Software Testing Qualifications Board

Geschäftlicher Nutzen: DerAutomotive Software Tester kann ... BO1 BO2 BO3 BO4 BO5

4 Statische und dynamische Tests

4.1 Statischer Test

AuT-4.1.1
… Zweck und Anforderungen der MISRA-C-
Programmierrichtlinie anhand von Beispielen
erläutern

K2 X X

AuT-4.1.2
… ein Anforderungsreview anhand der für den
Tester relevanten Qualitätsmerkmale der Norm
ISO/IEC/IEEE 29148 durchführen

K3 X X

4.2 Dynamischer Test

AuT-4.2.1
… Testfälle entwerfen, um eine modifizierte
Bedingungs-/Entscheidungsüberdeckung zu
erreichen

K3 X X

AuT-4.2.2 … den Einsatz von Back-to-Back-Tests anhand
von Beispielen erläutern K2 X X

AuT-4.2.3 … Testen mit Fehlereinfügung anhand von
Beispielen erläutern K2 X X

AuT-4.2.4 … die Prinzipien des anforderungsbasierten
Tests wiedergeben K1 X X

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 70 von 73 23.11.2025
© International Software Testing Qualifications Board

Geschäftlicher Nutzen: DerAutomotive Software Tester kann ... BO1 BO2 BO3 BO4 BO5

AuT-4.2.5
… kontextabhängige Kriterien für die Auswahl
geeigneter und notwendiger Testverfahren und
Testansätze anwenden

K3 X X X X

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 71 von 73 23.11.2025
© International Software Testing Qualifications Board

11 Anhang C – Versionshinweise
Der ISTQB® Automotive Software Tester Syllabus V2.1 (2025) ist ein Minor Update von V2.0.1 (2017).
Die Lernziele selbst sind unverändert, aber der Inhalt einiger Lernziele wurde auf den neuesten Stand
gebracht, um die aktualisierten Standards widerzuspiegeln, auf die im Lehrplan verwiesen wird.
Zusätzlich wurden Änderungen zwischen dem ISTQB CTFL 3.1 und CTFL 4.0 sowie Aktualisierungen im
ISTQB-Glossar berücksichtigt. Außerdem wurden Konsistenz und Verständlichkeit verbessert, wo dies
erforderlich war.

Die folgenden aktualisierten Standards wurden berücksichtigt:

• ISO 24748-1:2024

• ISO 26262:2018

• Automotive SPICE 4.0

• AUTOSAR Classic Release R23-11

• MISRA-C:2025

• ISO 29148:2018

Das Benennungsschema der Lernziele wurde auf "AuT" plus Abschnittsnummer geändert.

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 72 von 73 23.11.2025
© International Software Testing Qualifications Board

12 Anhang D – Automotive-Datenbasen und
Kommunikationsprotokolle

Schnittstellen Datenbank Kommunikationsprotokolle
Speicher ASAM MCD-2 MC

(auch ASAP2 oder A2L)
ASAM MCD-1 XCP
(Universelles Protokoll für Messung und
Kalibrierung)

ASAM MCD-1 CCP
(CAN-Kalibrierungsprotokoll)

Bus ASAM MCD-2 NET-Norm
(auch FIBEX – Field Bus Exchange
Format)

FlexRay
(ISO 17458)

CAN
(Controller Area Network nach ISO 11898-2)

DBC
(Kommunikationsdatenbank für
CAN)

CAN
(Steuergerätenetzwerk nach ISO 11898-2)

Diagnose ASAM MCD-3 D
(API-Spezifikation)

ASAM SOVD
(Service-orientierte
Fahrzeugdiagnose)

CDD
(CANdelaStudio
Diagnosebeschreibung)

KWP2000 (ISO 14230)

ISO-OBD (ISO 15031)

UDS (ISO 14229)

SOME/IP (AUTOSAR-Spezifikation)

Tabelle 7: Gängige Datenbasen und Kommunikationsprotokolle aus der Automobilbranche
AUTOSAR hat ein standardisiertes XML-Format, das die Datenbasen eines kompletten Fahrzeugs
integriert. Es wird ARXML-Format genannt.

https://de.wikipedia.org/wiki/Unified_Diagnostic_Services

Lehrplan
Certified Tester
Automotive Software Tester

V2.1 Seite 73 von 73 23.11.2025
© International Software Testing Qualifications Board

13 Index

Abnahmetest 32

Automotive SPICE 19

AUTOSAR 30

Back-to-Back-Test 47

Bedingungsüberdeckung 46

Closed-Loop-System 35

Darstellung der Stufen 21

Fehlereinfügung 48

funktionale Sicherheit 25

Hardware-in-the-Loop 37

Komponentenintegrationstest 32

Komponententest 32

Kriterien für die Regressionsverifizierung 23

MC/DC 46

Mehrfachbedingungstest 46

Methodentabelle 28, 32

Model-in-the-Loop 36

Modifizierter Bedingungs-/Entscheidungstest
46

Open-Loop-System 35

Programmierrichtlinien 44

Prozessgruppe 19

Prozesskategorie 19

Prozessmodelle 19

Prozessverbesserung 19, 21

Qualitätsmerkmale 45

Sicherheitslebenszyklus 25

Software-in-the-Loop 37

Softwarekomponentenverifizierung und
Integrationsverifizierung 22

Software-Unit-Verifizierung 22

Softwareverifizierung 22

Systemintegration und
Integrationsverifizierung 22

Systemintegrationstest 31, 32

Systemlebenszyklus 15

Systemtest 31, 32

Systemverifizierung 22

Testen von Systemen von Systemen 32

Teststrategie 23

Teststufen 27, 31

Umgebungsmodell 34, 35, 36

Verfolgbarkeit 24

Verifizierung 26, 27

XiL-Testumgebungen 36

	Urheberschutzvermerk
	Änderungsübersicht der deutschsprachigen Ausgabe
	Inhaltsverzeichnis
	Danksagungen
	0 Einführung in diesen Lehrplan
	0.1 Zweck dieses Lehrplans
	0.2 ISTQB® Certified Tester – Automotive Software Tester (CT-AuT)
	0.3 Karriereweg für Tester
	0.4 Geschäftlicher Nutzen
	0.5 Lernziele und kognitive Wissensstufen
	0.6 Zertifizierungsprüfung zum ISTQB® Certified Tester – Automotive Software Tester (CT-AuT)
	0.7 Akkreditierung
	0.8 Umgang mit Normen und Standards
	0.9 Detaillierungsgrad
	0.10 Aufbau des Lehrplans

	1 Einführung in das Testen von Software im Automotive-Bereich – 30 Minuten
	Schlüsselbegriffe
	Lernziele für Kapitel 1 Der Lernende kann ...
	1.1 Anforderungen aus divergierenden Projektzielen und zunehmender Produktkomplexität
	1.2 Projektaspekte, die von Normen beeinflusst werden
	1.3 Die sechs generischen Phasen des Systemlebenszyklus
	1.4 Der Beitrag und die Beteiligung des Testers am Freigabeprozess
	1.1 Anforderungen aus divergierenden Projektzielen und zunehmender Produktkomplexität
	1.2 Projektaspekte, die von Normen beeinflusst werden
	1.3 Die sechs generischen Phasen des Systemlebenszyklus
	1.4 Der Beitrag und die Beteiligung des Testers am Freigabeprozess

	2 Normen für das Testen von elektrischen/elektronischen (E/E-)Systemen – 300 Minuten
	Schlüsselbegriffe
	Domänenspezifische Schlüsselbegriffe
	Lernziele für Kapitel 2 Der Lernende kann ...
	2.1 Automotive SPICE (ASPICE)
	2.2 ISO 26262
	2.3 AUTOSAR
	2.4 Vergleich von ASPICE, ISO 26262 und CTFL®
	2.1 Automotive SPICE (ASPICE)
	2.1.1 Aufbau und Struktur des Standards
	2.1.1.1 Die zwei Dimensionen von ASPICE
	2.1.1.2 Prozesskategorien in der Prozessdimension [informativ]
	2.1.1.3 Fähigkeitsstufen (Capability Level, CL) in der Fähigkeitsdimension

	2.1.2 Anforderungen des Standards
	2.1.2.1 Testspezifische Prozesse von ASPICE
	2.1.2.2 Bewertungsstufen und Fähigkeitsindikatoren
	Damit ein Prozess einen bestimmten Fähigkeitsgrad erreicht, müssen die Fähigkeitsindikatoren entweder weitgehend erfüllt (L) oder vollständig erfüllt (F) sein.
	2.1.2.3 Teststrategie und Kriterien für die Regressionsverifizierung
	2.1.2.4 Testmittel in ASPICE
	2.1.2.5 Messungen zur Software-Unit-Verifizierung
	2.1.2.6 Verfolgbarkeit in ASPICE

	2.2 ISO 26262
	2.2.1 Funktionale Sicherheit und Sicherheitskultur
	2.2.1.1 Zielsetzung der funktionalen Sicherheit für E/E-Systeme
	2.2.1.2 Beitrag des Testers zur Sicherheitskultur

	2.2.2 Integration des Testers in den Sicherheitslebenszyklus
	2.2.3 Gliederung und testspezifische Anteile der Norm
	2.2.3.1 Aufbau und Struktur der Norm [informativ]
	2.2.3.2 Relevante Teile der ISO 26262 für den Tester

	2.2.4 Einfluss der Kritikalität auf die Testumfänge
	2.2.4.1 Die Kritikalitätsstufen des ASIL
	2.2.4.2 Einfluss des ASIL auf Testverfahren, Testarten und Testumfänge

	2.2.5 Anwendung des aus CTFL® bekannten Wissens im Kontext der ISO 26262

	2.3 AUTOSAR
	2.3.1 Projektziele von AUTOSAR
	2.3.2 Allgemeine Struktur von AUTOSAR [informativ]
	2.3.3 Einfluss von AUTOSAR auf die Arbeit des Testers

	2.4 Vergleich von ASPICE, ISO 26262 und CTFL®
	2.4.1 Zielsetzung von ASPICE und ISO 26262
	2.4.2 Vergleich der Teststufen zwischen ASPICE, ISO 26262 und CTFL®

	3 Testen in einer virtuellen Umgebung – 160 Minuten
	Schlüsselbegriffe
	Domänenspezifische Schlüsselbegriffe
	Lernziele für Kapitel 3 Der Lernende kann ...
	3.1 Testumgebung im Allgemeinen
	3.2 Testen in XiL-Testumgebungen
	3.1 Testumgebung im Allgemeinen
	3.1.1 Motivation für eine Testumgebung in der Entwicklung im Automobilbereich
	3.1.2 Allgemeine Teile einer Testumgebung
	3.1.3 Unterschiede zwischen Closed-Loop- und Open-Loop-Systemen
	3.1.3.1 Closed-Loop-System
	3.1.3.2 Open-Loop-System

	3.1.4 Datenbasen und Kommunikationsprotokolle eines Steuergeräts

	3.2 Testen in XiL-Testumgebungen
	3.2.1 Model-in-the-Loop (MiL)
	3.2.1.1 Aufbau einer MiL-Testumgebung
	3.2.1.2 Anwendungsbereiche und Randbedingungen einer MiL-Testumgebung

	3.2.2 Software-in-the-Loop (SiL)
	3.2.2.1 Aufbau einer SiL-Testumgebung
	3.2.2.2 Anwendungsbereiche und Randbedingungen einer SiL-Testumgebung

	3.2.3 Hardware-in-the-Loop (HiL)
	3.2.3.1 Aufbau einer HiL-Testumgebung
	3.2.3.2 Einsatzgebiete und Randbedingungen einer HiL-Testumgebung

	3.2.4 Vergleich der XiL-Testumgebungen
	3.2.4.1 Vor- und Nachteile des Testens in den XiL-Testumgebungen
	3.2.4.2 Anwendung von Kriterien für die Zuordnung eines bestimmten Testumfangs zu einer oder mehreren Testumgebungen
	3.2.4.3 Einordnung der XiL-Testumgebungen in das V-Modell

	4 Statische und dynamische Tests – 230 Minuten
	Schlüsselbegriffe
	Lernziele für Kapitel 4 Der Lernende kann ...
	4.1 Statischer Test
	4.2 Dynamischer Test
	4.1 Statischer Test
	4.1.1 Die MISRA-C-Programmierrichtlinien
	4.1.2 Qualitätsmerkmale für Anforderungsreviews

	4.2 Dynamischer Test
	4.2.1 Modifizierter Bedingungs-/Entscheidungstest
	4.2.2 Back-to-Back-Test
	4.2.3 Fehlereinfügungstest
	4.2.4 Anforderungsbasierter Test
	4.2.5 Kontextabhängige Auswahl

	5 Liste der Abkürzungen
	6 Domänenspezifische Begriffe
	7 Referenzen
	7.1 Normen
	7.2 ISTQB®-Dokumente
	7.3 Glossar-Referenzen

	8 Marken
	9 Anhang A – Lernziele/kognitive Stufen
	Stufe 1: Erinnern (K1)
	Stufe 2: Verstehen (K2)
	Stufe 3: Anwenden (K3)

	10 Anhang B – Verfolgbarkeitsmatrix des geschäftlichen Nutzens (Business Outcomes) mit Lernzielen
	11 Anhang C – Versionshinweise
	12 Anhang D – Automotive-Datenbasen und Kommunikationsprotokolle
	13 Index

